• Title/Summary/Keyword: Coating Flow

Search Result 402, Processing Time 0.024 seconds

Optimization of HVOF Spray Parameters for $Cr_3C_2 - 7wt%NiCr$ Coating Powder by Experimental Design Method (실험계획법에 의한 $Cr_3C_2 - 7wt%NiCr$ 용사분말의 HVOF 용사변수 최적화)

  • 김병희;서동수
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.125-134
    • /
    • 1997
  • This study was conducted by L9 orthogonal array to obtain optimum spray parameters for This study was conducted by L9 orthogonal array to obtain optimum spray parameters for $Cr_3C_2 - 7wt%$(80wt%Ni-20wt%Cr) coating powder. The factors were hydrogen flow rate, oxygen flow rate, gun-to-work distance, powder feed rate. And evaluation methods for the coating were surface roughness, oxygen concentration, micro-hardness, pore size and distribution, low angle ($30^{\circ}$) erosion rate, and microstructure of coating. The optimum HVOF spray conditions were proved as follows : hydroen flow rate ; 681 SLPM, oxygen flow rate ; 215 SLPM $H^2/O^2 ratio= 3.16), gun-to-work distance ; 22cm, powder feed rate; 25g/min. The hardness (Hv300) was 1147 and the erosion rate ($30^{\circ}$degree) was $3.16\times10^{-4}$g/g. It is believed that the optimized spray conditions can be improved the wear-resistance and anti-erosion characteristics of the coating.

  • PDF

Wear Property of HOVF WC-CrC-Ni Coating Prepared by Optimal Coating Process (최적 고속화염 용사 코팅 공정기술로 제조된 WC-CrC-Ni 코팅의 마모 특성)

  • Joo, Yunkon;Yoon, Jaehong;Lee, Jehyun
    • Korean Journal of Materials Research
    • /
    • v.27 no.2
    • /
    • pp.119-126
    • /
    • 2017
  • WC-CrC-Ni coatings were prepared by nine processes of the Taguchi program with three levels for the four spray parameters: spray distance, flow rates of hydrogen and oxygen, and powder feed rate. The optimal coating process (OCP) was oxygen flow rate of 38 FMR, hydrogen flow rate of 53 FMR, powder feed rate of 25 g/min, and spray distance of 7 inches. Hardness of 1150 Hv and porosity of 1.2 %, were obtained by OCP; these are better results compared with the highest 1033 Hv and the lowest 1.5 % porosity obtained by nine processes of the Taguchi program. Friction coefficient of the WC-CrC-Ni coating decreased from $0.36{\pm}0.07$ at $25^{\circ}C$ to $0.23{\pm}0.07$ at $450^{\circ}C$. These values were smaller than those of the EHC (electrolytic hard chrome) plating at both temperatures due to lubrication from the oxide debris. The wear trace and wear depth of the coating are smaller than those of the EHC at both temperatures. Pitting was not found in the WC-CrC-Ni coating sample, while it did appear in the EHC sample.

Analysis for injection molding and in-mold coating of automotive armrests (자동차 암레스트의 사출성형과 인몰드코팅에 관한 해석)

  • Park, Jong-Lak;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.48-54
    • /
    • 2019
  • Analytical and experimental study were carried out in order to achieve simultaneous coating and injection molding of an automotive armrest. A mold was designed to be included one core and two cavities, which were composed of a substrate cavity and a coating cavity. The materials used were PC/ABS for substrate and 2-component Polyurethane for coating. The predicted flow patterns were in good agreement with experimental results in injection molding and in-mold coating. Based on analysis and experiment, it was found that the optimal processing conditions were packing pressure of 90MPa and holding time of 7sec.

Coating System for High Quality Ferromagnetic Thin Films (고품위 자성체 박막 코팅 시스템)

  • Kim, Gi-Bum;Hwang, Yoon-Sik;Kim, Yeong-Shik;Park, Jang-Sick;Park, Jae-Bum
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.231-232
    • /
    • 2007
  • Nickel oxide thin films were deposited by the DC magnetron reactive sputtering process under the conditions such as various oxygen flow rates(0, 3, 6, 8, 10 sccm) with constant 33 sccm argon flow rate for the sputtering time of 40 second with the power of 0.3 kW. Sheet resistances were measured by the four point probes. In order to observe discharge voltage characteristics according to the oxygen flow rates, the sputtering processes were performed under the powers of 0.2kW and 0.3kW. The feasibility of the coating system for high quality ferromagnetic thin films was tested through the electromagnetic simulation and the thin film thickness measurement from the experiment. It was shown that a discharge voltage was decreased under the low power and low oxygen flow rate, since the oxygen was quickly saturated on nickel target surface. The sheet resistance was increased as oxygen flow rate increased. The film thickness deposited by the coating system for ferromagnetic target was improved approximately 10% in comparison with previous coating systems.

  • PDF

Effects of nitrogen doping on mechanical and tribological properties of thick tetrahedral amorphous carbon (ta-C) coatings (질소 첨가된 ta-C 후막코팅의 기계 및 트라이볼로지적 특성연구)

  • Gang, Yong-Jin;Jang, Yeong-Jun;Kim, Jong-Guk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.156-156
    • /
    • 2016
  • The effect of nitrogen doping on the mechanical and tribological performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to $1{\mu}m$ in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness of the coatings decreased from $65{\pm}4.8GPa$ to $25{\pm}2.4GPa$ with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the $sp^2$ phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics. To achieve highly conductive and wear-resistant coatings in system components, the friction and wear performances of the coating were investigated. The tribological behavior of the coating was investigated by sliding an SUJ2 ball over the coating in a ball-on-disk tribo-meter. The experimental results revealed that doping using a high nitrogen gas flow rate improved the wear resistance of the coating, while a low flow rate of 0-10 sccm increased the coefficient of friction (CoF) and wear rate through the generation of hematite (${\alpha}-Fe_2O_3$) phases by tribo-chemical reaction. However, the CoF and wear rate dramatically decreased when the nitrogen flow rate was increased to 30-40 sccm, due to the nitrogen inducing phase transformation that produced a graphite-like structure in the coating. The widths of the wear track and wear scar were also observed to decrease with increasing nitrogen flow rate. Moreover, the G-peaks of the wear scar around the SUJ2 ball on the worn surface increased with increasing nitrogen doping.

  • PDF

Wear Property of Diamalloy-4006 Coating Prepared by OCP HVOF Thermal Spraying (최적 고속화염용사법으로 제조된 Diamalloy4006 코팅의 내마모 특성)

  • Joo, Yunkon;Yoon, Jaehong;Jung, Yeongil;Lee, Jehyun
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.442-449
    • /
    • 2015
  • The effects of coating parameters were investigated in wear resistance coatings of Diamalloy-406 on Inconel 718 to obtain an optimum coating condition by high velocity oxy-fuel spraying. The coating parameters, the flow rates of source gases (hydrogen and oxygen), the powder feed rate, and the spray distance, were designed by the Taguchi method. The optimal conditions were determined: oxygen flow rate 34 FRM, hydrogen flow rate 57 FRM, powder feed rate 35 g/min, and spray distance 7 inch. Friction coefficients of the coating and the substrate decreased with an increasing sliding surface temperature from $25^{\circ}C$ to $450^{\circ}C$. The friction coefficient of Diamalloy-4006 coating decreased as the sliding surface temperature increased from $0.43{\pm}0.01$ at $25^{\circ}C$ to $0.29{\pm}0.01$ at $450^{\circ}C$. The wear trace and wear depth of the coating were smaller than the substrate at all temperatures tested. The relationship between spray parameters and wear resistance was discussed extensively, based on the measured roughness, hardness, and porosity in each coating.

A Study on the Behavior of Bubbles Trapped in the In-Mold Coating Process

  • NguyenThi, Phuong;Kwon, Arim;Yoo, Yeong-Eun;Yoon, Jae Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.998-1002
    • /
    • 2012
  • This paper investigates the behavior of bubbles trapped in the in-mold coating (IMC) process. Silicon oil with different viscosity, 100, 150, 200, 300 and 400cps, was selected instead of the coating materials. To observe the flow front inside, a special mold was designed, where front plate was made of transparent material (acrylate). The overall size of front plate was $150mm{\times}120mm$. Mold gate location can be changed from up to down. Four heaters were used to investigate the effectiveness of temperature. The results show that silicon viscosity, mold gate location and mold temperature play an important role on the appearance of bubbles trapped in IMC process.

Electrochemical Characteristics of Marine Anti-Corrosive Coating under Shear Flows (전단유동 하에서의 선박용 방식도막의 전기화학 특성)

  • Park, Hyun;Park, Jin-Hwan;Ha, Hyo-Min;Chun, Ho-Hwan;Lee, In-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.268-274
    • /
    • 2006
  • Analysis has been made of the anti-corrosive property of organic coating under the shear stress of the flow by means of AC impedance method. Marine anti-corrosive painted panels were placed in the water channel with varying flow rate, thereby experiencing varying flow shear stress on the surfaces. The velocities of the salt water were ranged from 1.48 to 5.2 m/s and the coating thickness of from $70{\mu}m\;to\;140{\mu}m$. For all coating thicknesses investigated, the poorer anti-corrosive property and the lower adhesion strength have been found for the higher shear stress. It has been found that the shear stress accelerates the aging of organic marine coatings.

CFD Analysis on the Internal Air Flow Control in a Wax Spin Coater of Silicon Wafer Polishing Station (실리콘 웨이퍼 연마장비용 왁스 스핀코팅장치의 내부기류 제어에 관한 전산유동해석)

  • Kim, Kyoung-Jin;Kim, Dong-Joo;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper, the air flow induced by the rotating flat disk is numerically investigated in a hope to better understand the air flow structures inside the wax spin coater for a silicon wafer polishing station. Due to the complex inner geometry of actual spin coater such as the casing around the rotating ceramic block and servo motor, recirculation of air flow is inevitably found on the coating target if the internal space of spin coater is closed at the bottom and it could be the possible source of contamination on the wax coating. By numerical flow simulation, we found that it is necessary to install the air vent at the bottom and to apply the sufficient air suction in order to control the path of air flow and to eliminate the air recirculation zone above the spinning surface of coating target.

Rheological Properties and Roll Coating Dynamics of Basecoats for Precoated Automotive Metal Sheets (자동차 선도장 강판용 베이스코트의 유변학적 특성 및 롤코팅 동적 거동)

  • Lee, Dong Geun;Hwang, Ji Won;Kim, Kyung Nam;Noh, Seung Man;Jung, Hyun Wook
    • Journal of Adhesion and Interface
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In this study, rheological properties and flow dynamics in roll coating process of basecoat paints have been investigated for automotive precoated metal (PCM) sheet applications. Various rheological properties for basecoats with three colors (black, blue, and silver), such as shear viscosity data at room temperature and elastic/viscous moduli under thermal curing condition, have been measured using a rotational rheometer. It is found that the relative portion of function groups inside basecoats and their viscosity level have greatly affected the formation of crosslinked networks by thermal curing. Also, operability coating windows for basecoats have been established in three-roll coating process system by observing their flow instabilities such as ribbing and cascade. It is confirmed that rheological approaches applied in this study have been usefully applied to develop environmentally-friendly PCM coating technology and optimally control the coating operations for non-Newtonian PCM paints.