• 제목/요약/키워드: Coating Flow

검색결과 403건 처리시간 0.024초

열교환기 표면상태와 CHF의 상관관계에 대한 연구 (A Study on the Relationship between Surface Condition and Critical Heat Flux in Heat Exchanger)

  • 김우중;김남진
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.1-6
    • /
    • 2020
  • This work experimentally explored the influence of nano-fouling on CHF, flow boiling heat transfer coefficient, contact angle, and surface roughness. In this study, the flow velocity conditions are established at 0.5, 1.0, and 1.5 m/s. Also, the nanoparticles of oxidized MWCNT were deposited on a heat transfer surface for 0, 120, 180, and 240 sec. As the results, it was found that CHF and superheated temperature were increased in case of nano fouling on the heat transfer surface in oxidized MWCNT fluid. Also, the contact angle and surface roughness decreased when flow velocity and nano coating increased.

Fabrication and Drive Test of a Peristaltic Thermopnumatic PDMS Micropump

  • Jeong Ok Chan;Park Sin Wook;Yang Sang Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.649-654
    • /
    • 2005
  • This paper presents fabrication and drive test of a peristaltic PDMS micropump actuated by the thermopneumatic force. The micropump consists of the three peristaltic-type actuator chambers with microheaters on the glass substrate and a microchannel connecting the chambers and the inlet/outlet port. The micropump is fabricated by the spin-coating process, the two-step curing process, the JSR (negative PR) molding process, and etc. The diameter and the thickness of the actuator diaphragm are 2.5 mm and $30{\mu}m$, respectively. The meniscus motion in the capillary tube is observed with a video camera and the flow rate of the micro pump is calculated through the frame analysis of the recorded video data. The maximum flow rate of the micropump is about $0.36\;{\mu}L/sec$ at 2 Hz for the zero hydraulic pressure difference when the 3-phase input voltage is 20 V.

소수성 패턴을 이용한 미세유로에서의 유체 조작 (Fluidic Manipulating in Microchannels Using Hydrophobic Patterns)

  • 이상호;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.583-585
    • /
    • 2000
  • This study reports the fluidic handling method using hydrophobic patterns inside PDMS microchannels. In order to obtain hydrophobic patterns, we pattern fluorcarbon(FC) film surfaces by lift-off process. FC films are deposited by spin coating method and plasma polymerization method. Hydrophobic surfaces are used as the barriers to control fluid flow. Injected liquid is spontaneously filled up inside PDMS-microchannels by the capillary action. Liquid flow stops when it meets hydrophobic regions which can be the barrier against fluid flow. Then, again, when liquid is pressurized externally, liquid can move toward another hydrophilic region by external air pressure. Contact angle analyses are performed on fluorocarbon films to estimate the wettability of film surfaces.

  • PDF

친화성 막모듈에 의한 단백질 크로마토그래픽 특성 (Characteristics of Protein Chromatography by Affinity Membrane Mudule)

  • 이광진;염경호
    • KSBB Journal
    • /
    • 제13권2호
    • /
    • pp.125-132
    • /
    • 1998
  • Protein affinity membrane was prepared via the coating of chitosan gel on the porous flat polysulfone membrane surface, followed by the immobilization f the reactive dye (Cibacron Blue 3GA) to the chitonsan gel. The maximum protein binding capacity of affinity membrane was about 70${\mu}g/cm^2$ determined by the batch adsorption experiments of human serum albumin (HSA). Using module of this membrane, the characteristics of protein chromatography were investigated through the experiments of elution and frontal chromatography of HSA. This membrane module promises as a chromatography column, since it represented a lower pressure drop and a greater reproducibility. The protein separation ratio was significantly influenced by the flow rate of mobile phase and the injection quantity of HSA. The dynamic protein binding capacity of module decreased from the equilibrium binding capacity with increasing flow rate and approached the value of 15 - 20 ${\mu}g/cm^2$ for flow rates above 6 mL/min.

  • PDF

원형관 코팅장치에서 연소 입자의 응축성장에 미치는 2차원 열 및 물질전달의 영향 (Effects of Two-dimensional Heat and Mass Transports on Condensational Growth of Soot Particles in a Tubular Coater)

  • 박성훈
    • 한국입자에어로졸학회지
    • /
    • 제9권3호
    • /
    • pp.163-171
    • /
    • 2013
  • Soot particles emitted from combustion processes are often coated by non-absorbing organic materials, which enhance the global warming effect of soot particles. It is of importance to study the condensation characteristics of soot particles experimentally and theoretically to reduce the uncertainty of the climate impact of soot particles. In this study, the condensational growth of soot particles in a tubular coater was modeled by a one-dimensional (1D) plug flow model and a two-dimensional (2D) laminar flow model. The effects of 2D heat and mass transports on the predicted particle growth were investigated. The temperature and coating material vapor concentration distributions in radial direction, which the 1D model could not accounted for, affected substantially the particle growth in the coater. Under the simulated conditions, the differences between the temperatures and vapor concentrations near the wall and at the tube center were large. The neglect of these variations by the 1D model resulted in a large error in modeling the mass transfer and aerosol dynamics occurring in the coater. The 1D model predicted the average temperature and vapor concentration quite accurately but overestimated the average diameter of the growing particles considerably. At the outermost grid, at which condensation begins earliest due to the lowest temperature and saturation vapor concentration, condensing vapor was exhausted rapidly because of the competition between condensations on the wall and on the particle surface, decreasing the growth rate. At the center of the tube, on the other hand, the growth rate was low due to high temperature and saturation vapor concentration. The effects of Brownian diffusion and thermophoresis were not high enough to transport the coating material vapor quickly from the tube center to the wall. The 1D model based on perfect radial mixing could not take into account this phenomenon, resulting in a much higher growth rate than what the 2D model predicted. The result of this study indicates that contrary to a previous report for a thermodenuder, 2D heat and mass transports must be taken into account to model accurately the condensational particle growth in a coater.

Experimental Study on the Hydrophilic Porous Film Coating for Evaporative Cooling Enhancement

  • Lee, Dae-Young;Lee, Jae-Wan;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권2호
    • /
    • pp.99-106
    • /
    • 2005
  • Falling film heat transfer has been widely used in many applications in which heat and mass transfer occur simultaneously, such as evaporative coolers, cooling towers, absorption chillers, etc. In such cases, it is desirable that the falling film spreads widely on the surface to form a thin liquid film to enlarge contact surface and to reduce the thermal resistance across the film and/or the flow resistance to the vapor stream over the film. In this respect, hydrophilic treatment of the surface has been tried to improve the surface wettability by decreasing the contact angle between the liquid and the surface. However, the hydrophilic treatment was found not very effective to increase the surface wettedness of inclined surfaces, since the liquid flow forms rivulet patterns instead of a thin film as it flows down the inclined surface and accelerates gradually by the gravity. In this work, a novel method is suggested to improve the surface wettedness enormously. In this work, the surface is treated to have a thin hydrophilic porous layer on the surface. With this treatment, the liquid can spread widely on the surface by the capillary force resulting from the porous structure. In addition to this, the liquid can be held within the porous structure to improve surface wettedness regardless of the surface inclination. The experiment on the evaporative cooling of inclined surfaces has been conducted to verify the effectiveness of the surface treatment. It is measured that the latent heat transfer increases almost by $80\%$ at the hydrophilic porous layer coated surface as compared with the untreated surface.

가스비와 두께 가변에 따른 실리콘질화막의 특성 (Properties of Silicon Nitride Deposited by LF-PECVD with Various Thicknesses and Gas Ratios)

  • 박제준;김진국;이희덕;강기환;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.154-157
    • /
    • 2011
  • Hydrogenated silicon nitride deposited by LF-PECVD is commonly used for anti-reflection coating and passivation in silicon solar cell fabrication. The deposition of the optimized silicon nitride on the surface is elemental in crystalline silicon solar cell. In this work, the carrier lifetimes were measured while the thicknesses of $SiN_x$ were changed from 700 ${\AA}$ to 1150 ${\AA}$ with the gas flow of $SiH_4$ as 40 sccm and $NH_3$ as 120 sccm,. The carrier lifetime enhanced as the thickness of $SiN_x$ increased due to improved passivation effect. To study the characteristics of $SiN_x$ with various gas ratios, the gas flow of $NH_3$ was changed from 40 sccm to 200 sccm with intervals of 40 sccm. The thickness of $SiN_x$ was fixed as 1000 ${\AA}$ and the gas flow of $SiH_4$ as 40 sccm. The refractive index of SiNx and the carrier lifetime were measured before and after heat treating at $650^{\circ}C$ to investigate their change by the firing process in solar cell fabrication. The index of refraction of SiNx decreased as the gas ratios increased and the longest carrier lifetime was measured with the gas ratio $NH_3/SiH_4$ of 3.

  • PDF

바나듐 레독스 흐름 전지용 복합재료 분리판 개발 (Development of Composite Bipolar Plate for Vanadium Redox Flow Battery)

  • 임준우
    • Composites Research
    • /
    • 제34권3호
    • /
    • pp.148-154
    • /
    • 2021
  • 탄소/에폭시 복합재료 분리판(BP)은 높은 기계적 특성과 생산성으로 인해 바나듐 레독스 흐름전지(VRFB)의 기존 흑연 분리판을 대체할 가능성이 있는 BP이다. 다기능 구조인 탄소/에폭시 복합재료 BP는 계면접촉저항(ICR)을 줄이기 위해 흑연 코팅 또는 추가 표면 처리가 필요하다. 그러나 팽창 흑연 코팅은 VRFB 작동 조건에서 낮은 내구성을 가지며 별도의 표면 처리는 추가 비용이 발생한다는 단점이 있다. 본 연구에서는 폴리에스테르 직물을 적용하여 탄소/에폭시 복합재료 BP 표면의 잉여 수지층을 균일하게 제거하여 탄소섬유를 노출시키는 잉여 수지 흡수법을 개발하였다. 이 방법은 BP 표면에 탄소섬유를 노출하여 ICR을 감소시킬 뿐만 아니라 탄소 펠트 전극을 효과적으로 고정할 수 있는 고유한 도랑 패턴을 형성한다. 잉여 수지 흡수법에 의해 제작된 복합재료 BP의 산성 환경 내구성, 기계적 특성 및 기체 투과도에 대해 실험적으로 검증하였다.

Performance and heat transfer analysis of turbochargers using numerical and experimental methods

  • Pakbin, Ali;Tabatabaei, Hamidreza;Nouri-Bidgoli, Hossein
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.523-532
    • /
    • 2022
  • Turbocharger technology is one of the ways to survive in a competitive market that is facing increasing demand for fuel and improving the efficiency of vehicle engines. Turbocharging allows the engine to operate at close to its maximum power, thereby reducing the relative friction losses. One way to optimally understand the behavior of a turbocharger is to better understand the heat flow. In this paper, a 1.7 liter, 4 cylinder and 16 air valve gasoline engine turbocharger with compressible, viscous and 3D flow was investigated. The purpose of this paper is numerical investigation of the number of heat transfer in gasoline engines turbochargers under 3D flow and to examine the effect of different types of coatings on its performance; To do this, modeling of snail chamber and turbine blades in CATIA and simulation in ANSYS-FLUENT software have been used to compare the results of turbine with experimental results in both adiabatic and non-adiabatic (heat transfer) conditions. It should be noted that the turbine blades are modeled using multiple rotational coordinate methods. In the experimental section, we simulated our model without coating in two states of adiabatic and non-adiabatic. Then we matched our results with the experimental results to prove the validation of the model. Comparison of numerical and experimental results showed a difference of 8-10%, which indicates the accuracy and precision of numerical results. Also, in our studies, we concluded that the highest effective power of the turbocharged engine is achieved in the adiabatic state. We also used three types of SiO2, Sic and Si3N4 ceramic coatings to investigate the effect of insulating coatings on turbine shells to prevent heat transfer. The results showed that SiO2 has better results than the other two coatings due to its lower heat transfer coefficient.

나선형 파형강관에서의 유동특성 및 압력강하 예측 (Prediction of Flow Behavior and Pressure Drop of Spirally Corrugated Steel Pipe)

  • 박종학
    • 한국전산유체공학회지
    • /
    • 제9권2호
    • /
    • pp.18-22
    • /
    • 2004
  • Numerical investigation has been conducted to figure out flow behavior and pressure drop characteristics of spirally corrugated steel pipe which is widely used in civil, industrial and agricultural field owing to many advantages such as good corrosion resistance and durability, strength, easy and quick installation. Also the poly-ethylene coating spirally corrugated steel pipe has the long life under condition of sea water immerged. In the present study, flow behavior in the spirally corrugated pipe and influence of P/d/sub h/(ratio of wave pitch to hydraulic diameter) to pressure drop are investigated by CFD with various Reynolds number. And also friction factor is estimated by pressure drop obtained by flow analysis. According to computation results, the flow runs spirally up and down along the spiral corrugation in the vicinity of wall, but the effect of spiral corrugation disappears in core region of pipe. As P/d/sub h/ becomes small, more pressure drop occurs in spirally corrugated Pipe. Besides, friction factor augmentation becomes much larger as Re increases. In case of p/d/sub h/=0.38, Pressure drop and friction factor of spirally corrugated pipe are about four times larger than smooth pipe at Re: 1.46×10/sup 6/.