• 제목/요약/키워드: Coating Flow

Search Result 403, Processing Time 0.026 seconds

Synthesis of TiO2-xNx Using Thermal Plasma and Comparison of Photocatalytic Characteristics (열플라즈마에 의한 TiO2-xNx의 합성 및 광촉매 특성 비교)

  • Kim, Min-Hee;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.270-276
    • /
    • 2008
  • $N_2$ doped $TiO_2$ nano-sized powder was prepared using a DC arc plasma jet and investigated with XRD, BET, SEM, TEM, and photo-catalytic decomposition. Recently the research interest about the nano-sized $TiO_2$ powder has been increased to improve its photo-catalytic activity for the removal of environmental pollutants. Nitrogen gas, reacting gas, and titanium tetrachloride ($TiCl_4$) were used as the raw materials and injected into the plasma reactor to synthesize the $N_2$ doped $TiO_2$ power. The particle size and XRD peaks of the synthesized powder were analyzed as a function of the flow rate of the nitrogen gas. Also, the characteristics of the photo-catalytic decomposition using the prepared powder were studied. For comparing the photo-catalytic decomposition performance of $TiO_2$ powder with that of $TiO_2$ coating, $TiO_2$ thin films were prepared by the spin coating and the pulsed laser deposition. For the results of the acetaldehyde decomposition, the photo-catalytic activity of $TiO_{2-x}N_x$ powder was higher than that of the pure $TiO_2$ powder in the visible light region. For the methylene blue decomposition, the decomposition efficiency of $TiO_2$ powder was also higher than that of $TiO_2$ film.

Hydrophobic property of surface glaze of ceramic tiles by copper powder addition (구리 분말 첨가를 통한 도자타일 표면유약의 소수화 특성)

  • Choi, Cheong-Soo;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.215-221
    • /
    • 2019
  • Ceramic tiles, which are widely used as interior and exterior materials for construction, have recently been required to have pollution prevention function. In order to remove contaminants, many researches of ceramic tiles with hydrophilic surface property through $TiO_2$ coating and hydrophobic surface property by improving the flow of water droplets have been proceeded. Expecially, it is very important to develop a surface glaze having hydrophobicity through a sintering process above $1000^{\circ}C$ without an additional coating process and the degradation of mechanical properties. In this study, surface glaze with copper powder was applied to manufacture of ceramic tile. Contact angle of ceramic tile according to thickness of surface glaze layer was investigated after the conventional sintering process. The contact angle of the ceramic tile surface without the copper powder was shown to be $25.3^{\circ}$, which is close to hydrophilic surface. However, the contact angle was increased up to $109.8^{\circ}$ when the thickness of surface glaze with the copper powder was $150{\mu}m$. The excellent hydrophobic property of the surface glaze with copper powder was resulted from the cellular structure of copper particles on the glaze surface. In addition, the mechanical properties of the developed hydrophobic ceramic tiles such as bending strength, chemical resistance, abrasion resistance, and frost resistance were well maintained and meet the criteria of 'KS L 1001 Ceramic tile'.

Water Repellency on a Nanostructured Superhydrophobic Carbon Fibers Network

  • Ko, Tae-Jun;Her, Eun-Kyu;Shin, Bong-Su;Kim, Ho-Young;Lee, Kwang-Ryeol;Hong, Bo-Ki;Kim, Sae-Hoon;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.224-224
    • /
    • 2012
  • For decades, carbon fiber has expanded their application fields from reinforced composites to energy storage and transfer technologies such as electrodes for super-capacitors and lithium ion batteries and gas diffusion layers for proton exchange membrane fuel cell. Especially in fuel cell, water repellency of gas diffusion layer has become very important property for preventing flooding which is induced by condensed water could damage the fuel cell performance. In this work, we fabricated superhydrophobic network of carbon fiber with high aspect ratio hair-like nanostructure by preferential oxygen plasma etching. Superhydrophobic carbon fiber surfaces were achieved by hydrophobic material coating with a siloxane-based hydrocarbon film, which increased the water contact angle from $147^{\circ}$ to $163^{\circ}$ and decreased the contact angle hysteresis from $71^{\circ}$ to below $5^{\circ}$, sufficient to cause droplet roll-off from the surface in millimeter scale water droplet deposition test. Also, we have explored that the condensation behavior (nucleation and growth) of water droplet on the superhydrophobic carbon fiber were significantly retarded due to the high-aspect-ratio nanostructures under super-saturated vapor conditions. It is implied that superhydrophobic carbon fiber can provide a passage for vapor or gas flow in wet environments such as a gas diffusion layer requiring the effective water removal in the operation of proton exchange membrane fuel cell. Moreover, such nanostructuring of carbon-based materials can be extended to carbon fiber, carbon black or carbon films for applications as a cathode in lithium batteries or carbon fiber composites.

  • PDF

Statistical approach to obtain the process optimization of texturing for mono crystalline silicon solar cell: using robust design (단결정 실리콘 태양전지의 통계적 접근 방법을 이용한 texturing 공정 최적화)

  • Kim, Bumho;Kim, Hoechang;Nam, Donghun;Cho, Younghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.47.2-47.2
    • /
    • 2010
  • For reducing outer reflection in mono-crystalline silicon solar cell, wet texturing process has been adapted for long period of time. Nowadays mixed solution with potassium hydroxide and isopropyl alcohol is used in silicon surface texturing by most manufacturers. In the process of silicon texturing, etch rate is very critical for effective texturing. Several parameters influence the result of texturing. Most of all, temperature, process time and concentration of potassium hydroxide can be classified as important factors. In this paper, temperature, process time and concentration of potassium hydroxide were set as major parameters and 3-level test matrix was created by using robust design for the optimized condition. The process optimization in terms of lowest reflection and stable etch rate can be traced by using robust design method.

  • PDF

Development Cut-off Value for Yin-deficiency Questionnaire and Diagnostic Ability of Yin-deficiency in Xerostomia (구강건조증 환자에서 음허 측정 설문지 절단점 개발 및 진단능 평가)

  • Jang, Seung-Won;Kim, Jin-Sung
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.4
    • /
    • pp.483-497
    • /
    • 2014
  • Objectives: The aims of study were developing cut-off value of Yin-deficiency questionnaire (YDQ) for diagnosis of Yin-deficiency (YD) and compare diagnostic ability between YDQ and Yin-deficiency scale score (YDS) in xerostomia patients. Methods: We recruited 58 xerostomia patients. They were diagnosed YD or non-YD by 3 Korean medicine doctors (KMD). We assessed YD using YDQ and YDS. We evaluated xerostomia using VAS, Dry Mouth Symptom Questionnaire (DMSQ), Salivary Flow Rate (SFR), oral moisture on buccal mucosa and tongue surface (OMB and OMT). We surveyed tongue coatings using Winkel Tongue Coating Index (WTCI). Results: We diagnosed 23 patients YD and 35 patients non-YD. There were no significant differences of age, sex and body mass index between the YD and non-YD groups. Using receiver operating characteristic curve analysis, the optimal cut-off value of YDQ was defined as 304. Sensitivity, specificity and Youden index of YDQ were 86.96%, 71.43% and 1.5839 respectively. Using Cohen's coefficient of agreement, we found that degree of agreement between KMD and YDQ diagnosis was moderate (${\kappa}$=0.524, p<0.001). Using Pearson's correlation analysis, we found concurrent validity of YDQ and YDS were significant correlated. Using area under curve value, we found diagnostic ability between YDQ and YDS were not significantly different (p=0.505), but there were more strong correlations between DMSQ-symptoms and YDQ (r=0.731, p<0.001) than correlations between DMSQ-symptoms and YDS (r=0.418, p<0.01). Conclusions: The cut-off value of YDQ can diagnose YD in xerostomia and diagnostic ability of YDQ in xerostomia is better than YDS.

Adsorption Characteristics of Pb(II) by Manganese Oxide Coated Activated Carbon in Fixed Bed Column Study (망간산화물이 코팅된 활성탄의 납 흡착특성에 관한 칼럼 실험)

  • Lee, Myoungeun;Lee, Chaeyoung;Chung, Jaewoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.39-44
    • /
    • 2014
  • Effects of operating parameters on the breakthrough properties of Pb(II) by $Mn_3O_4$ coated activated carbon prepared by supercritical technique were investigated through fixed-bed column experiments. The mass transfer zone and equilibrium adsorption capacity were enhanced about 2.8 times for Pb(II) by $Mn_3O_4$ coating onto activated carbon. Increase of bed height enhanced the residence time of Pb(II) in adsorption zone, giving the higher breakthrough time, mass transfer zone and equilibrium adsorption capacity. Increase of flow rate reduced the residence time and diffusion of Pb(II) in adsorption zone, therefore decreased the equilibrium adsorption capacity. The higher inlet concentration of Pb(II) decreased the breakthrough time and mass transfer zone through the promotion of Pb(II) transfer onto adsorbent.

Photocatalytic Cell Disruption of Giardia lamblia in a $UV/TiO_2$ Immobilized Optical-Fiber Reactor

  • YU , MI-JIN;KIM, BYUNG-WOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1105-1113
    • /
    • 2004
  • Disinfection of a waterborne pathogenic protozoa, Giardia lamblia, by the conventional chlorine method has been known to be difficult. An alternative disinfection has been carried out by using a UV -light illuminating optical­fiber photoreactor. Light intensity diffused from one piece of a clad-removed optical-fiber was $1- 1.5{\mu}Em^{-2}s^{-1}$. Disinfection capability in a UV -light irradiated optical-fiber reactor suspended with 0.01 g $TiO_{2}\;dm^{-3}$ was 1.4 times that in the same reactor without $TiO_{2}$ photocatalysts. To resolve the absorption and scattering of UV light by the particles themselves as well as the difficulty of recycling particles in the slurry­type reactor, $TiO_{2}$ which was obtained by a hydrothermal method, was immobilized on clad-removed optical fibers. Such pretreatment of fiber surface resulted in an excellent transparency, which enhanced the UV light to diffuse laterally from a fiber surface. Coating time of the prepared solution by the hydrothermal method was not effective after more than two times. Disinfection capability in the $TiO_{2}$-immobilized optical-fiber reactor was $83\%$ in 1 h at $40^{\circ}C$, which was slightly higher than $76\%$ at $22^{\circ}C$ and $68\%$ at $10^{\circ}C$. Disinfection capability at $22^{\circ}C$ increased from $74\%$ at an initial pH of 3.4, through $76\%$ at pH 6.5, to $87\%$ at an initial pH of 10. Oxygen supply with air-flow rate of 5 $cm^3\;min^{-1}$ did not seem to increase the disinfection capability with UV /immobilized $TiO_2$.

Photocatalytic Degradation of Phenol in $UV/TiO_2$ Packed-bed System ($UV/TiO_2$ 충진 반응기에서 페놀의 광산화 반응)

  • Park, Kil-Soon;Kim, Jong-Hwa;Lee, Sang-Wha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.939-945
    • /
    • 2005
  • The Photocatalytic activity was investigated with the increase of flow rate in a $UV/TiO_2$ packed-bed system. The rate of phenol degradation over $UV/TiO_2$ (dia. = 5 mm) was increased up to 300 mL/min and reached a plateau beyond 400 mL/min. The bead photocatalysts did not exhibit a distinct difference of the phenol degradation rate irrespective of corrosion rates of glass beads and $TiO_2$ coating amounts. Degussa P25 exhibited a higher photocatalytic activity in comparison to other $TiO_2$ sols(Ishihara & N). The performance(activity and durability) of $UV/TiO_2$ packed-bed system can be enhanced by the use of $TiO_2$-coated glass beads instead of granular types that is easily attrited by the shearing force of flowing fluids.

Electricity Generation Coupled with Wastewater Treatment Using a Microbial Fuel Cell Composed of a Modified Cathode with a Ceramic Membrane and Cellulose Acetate Film

  • Seo, Ha-Na;Lee, Woo-Jin;Hwang, Tae-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1019-1027
    • /
    • 2009
  • A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99% of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99% similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

A Study for the Fire Analysis and Igniting Cause of Freezing Protection Heating Cables (동파방지열선 화재 흔적분석과 발화원인 연구)

  • Lee, Jung Il;Ha, Kag Cheon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.15-20
    • /
    • 2018
  • There have been a number of major fatal fire accidents in Korea recently. The number of fires in 2017 were 44,178, which is not only increasing number of fires but also increasing in casualties. Particularly, the fire at Jecheon Sports Center, which suffered many casualties, is expected to have a huge impact. The cause of the fire has not been determined yet, but heat waves on the ceiling have also been pointed out. As such, the copper heating waves, which are used as a preventive measure against damage of pipes due to freezing of pipes, etc., always have a fire hazard. To determine the possibility of a flame-resistant heated fire, a positive electric cable product was used to artificially ignite and analyze the results. In case of a short circuit, the external covering of the positive electric cable is damaged, but not short circuit unless the heating material surrounding the wire is damaged. Due to the characteristics of heating cable for preventing copper waves, the chances of insulation becoming more severe due to moisture and temperature changes are higher than normal wires. If the internal heating system is carbonized by insulating deterioration without damage to the outer coating, it is likely to cause trekking, to form a winding loop in the heating materials, and to cause short circuit in the heated materials. For the positive temperature line, if the middle is shorted, the current continues to flow to the short circuit unless the breaker disconnects. Consequently, a heated fire that does not cut off the power immediately may leave multiple marks or cuts.