• Title/Summary/Keyword: Coated materials

Search Result 2,593, Processing Time 0.028 seconds

Residual Stress and Elastic Modulus of Y2O3 Coating Deposited by EB-PVD and its Effects on Surface Crack Formation

  • Kim, Dae-Min;Han, Yoon-Soo;Kim, Seongwon;Oh, Yoon-Suk;Lim, Dae-Soon;Kim, Hyung-Tae;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.410-416
    • /
    • 2015
  • Recently, a new $Y_2O_3$ coating deposited using the EB-PVD method has been developed for erosion resistant applications in fluorocarbon plasma environments. In this study, surface crack formation in the $Y_2O_3$ coating has been analyzed in terms of residual stress and elastic modulus. The coating, deposited on silicon substrate at temperatures higher than $600^{\circ}C$, showed itself to be sound, without surface cracks. When the residual stress of the coating was measured using the Stoney formula, it was found to be considerably lower than the value calculated using the elastic modulus and thermal expansion coefficient of bulk $Y_2O_3$. In addition, amorphous $SiO_2$ and crystalline $Al_2O_3$ coatings were similarly prepared and their residual stresses were compared to the calculated values. From nano-indentation measurement, the elastic modulus of the $Y_2O_3$ coating in the direction parallel to the coating surface was found to be lower than that in the normal direction. The lower modulus in the parallel direction was confirmed independently using the load-deflection curves of a micro-cantilever made of $Y_2O_3$ coating and from the average residual stress-temperature curve of the coated sample. The elastic modulus in these experiments was around 33 ~ 35 GPa, which is much lower than that of a sintered bulk sample. Thus, this low elastic modulus, which may come from the columnar feather-like structure of the coating, contributed to decreasing the average residual tensile stress. Finally, in terms of toughness and thermal cycling stability, the implications of the lowered elastic modulus are discussed.

Effect of TiB2 Coating on the Mechanical Properties of B4C/Al Composites Prepared by Infiltration Process (TiB2코팅이 함침법으로 제조되는 B4C/Al 복합체의 기계적 특성에 미치는 영향)

  • 김선혜;임경란;심광보;김창삼
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.777-783
    • /
    • 2003
  • The mechanical properties of B$_4$C/Al composites normally depend on the species and quantity of reaction products between B$_4$C and Al and then the control of reaction products is necessary to make desirable composites for lightweight advanced or armor materials. TiB$_2$ is chemically inert with aluminum and has a lower contact angle (85$^{\circ}$ at 100$0^{\circ}C$) to liquid aluminum than B$_4$C. Thus, TiB$_2$ coating on B$_4$C may lower infiltration temperature of aluminum when the B$_4$C/Al composites is fabricated by infiltration process. In this study, the effects of TiB$_2$ on the microstructure and mechanical properties of the B$_4$C/Al composites have been investigated. TiB$_2$ coated B$_4$C powder was prepared using the sol-gel technique. It was found that the B$_4$C surface is homogeneously covered with TiB$_2$ having a particles size of 20-50 nm. While the B$_4$C/Al composites prepared by infiltration after TiB$_2$ coating had 17 wt% of unreacted Al, on the other hand, the B$_4$C/Al composites without coating included 14 wt% of Al. As a result, the composites infiltrated after the coating showed higher fracture toughness and lower hardness. This strongly suggests that TiB$_2$ not only lowers the infiltration temperature, but also inhibits the reaction between B$_4$C and Al.

Preparation of Ferroelectric (YbxY1-x)MnO3 Thin Film by Sol-Gel Method (졸-겔법에 의한 (YbxY1-x)MnO3강유전체 박막제조)

  • 강승구;이기호
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.170-175
    • /
    • 2004
  • The ferroelectric (Y $b_{x}$ $Y_{1-x}$)Mn $O_3$ thin films were fabricated by sol-gel method using Y-acetate, Yb-acetate, and Mn-acetate as raw materials. The stable (Y $b_{x}$ $Y_{1-x}$)Mn $O_3$ precursor solution (sol) was prepared through the reflux process with acetylaceton as a catalyst and coated on Si(100) substrate by spin coating. The heat treatment temperature and, Rw ($H_2O$/alkoxide moi ratio) dependence on crystallinity of thin films were studied. The lowest temperature for obtaining YbMn $O_3$phase and the optimum heat-treatment conditions were proved as at 7$50^{\circ}C$ and 80$0^{\circ}C$, respectively. The hexagonal YbMn $O_3$with c-axis preferred orientation could be obtained at Rw=1 condition. The remanent polarization for the thin films of x=0 or 1 was about 200 nC/㎤ while, for the specimens ot 0< x< 1, were 50∼100 nC/$\textrm{cm}^2$.

The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT:PCBM Active Layer (P3HT:PCBM 활성층을 갖는 유기 박막태양전지의 후속 열처리 효과)

  • Jang, Seong-Kyu;Gong, Su-Cheol;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.63-67
    • /
    • 2010
  • The organic solar cells with Glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structure were fabricated using regioregular poly (3-hexylthiophene) (P3HT) polymer:(6,6)- phenyl $C_{61}$-butyric acid methyl ester (PCBM) fullerene polymer as the bulk hetero-junction layer. The P3HT and PCBM as the electron donor and acceptor materials were spin casted on the indium tin oxide (ITO) coated glass substrates. The optimum mixing concentration ratio of photovoltaic layer was found to be P3HT:PCBM = 4:4 in wt%, indicating that the short circuit current density ($J_{SC}$), open circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency (PCE) values were about 4.7 $mA/cm^2$, 0.48 V, 43.1% and 0.97%, respectively. To investigate the effects of the post annealing treatment, as prepared organic solar cells were post annealed at the treatment time range from 5min to 20min at $150^{\circ}C$. $J_{SC}$ and $V_{OC}$ increased with increasing the post annealing time from 5min to 15min, which may be originated from the improvement of the light absorption coefficient of P3HT and improved ohmic contact between photo voltaic layer and Al electrode. The maximum $J_{SC},\;V_{OC}$, FF and PCE values of organic solar cell, which was post annealed for 15min at $150^{\circ}C$, were found to be about 7.8 $mA/cm^2$, 0.55 V, 47% and 2.0%, respectively.

Formation Mechanism of Pores in Ni-P Coated Carbon Fiber Prepared by Electroless Plating Upon Annealing (무전해 니켈-인 도금법을 이용하여 도금된 탄소 섬유의 열처리 과정에서 나타나는 다공성 구조 생성 메커니즘 분석)

  • Ham, Seung Woo;Sim, Jong Ki;Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.438-442
    • /
    • 2013
  • In the present work, electroless plating was used for coating thin films consisting mainly of Ni and P on carbon fiber. Structural changes appeared upon the post-annealing at various temperatures of the Ni-P film on carbon fiber was studied using various analysis methods. Scanning, a flat surface structure of Ni-P film on carbon fiber was found after electroless plating of Ni-P film on carbon fiber without post-annealing, whereas annealing at $350^{\circ}C$ resulted the formation of porous structures. With increasing the annealing temperature to $650^{\circ}C$ with an interval of $50^{\circ}C$, the pore size increased, but the density decreased. X-ray diffraction (XRD) showed the existence of metallic Ni, and Ni-P compounds before post-annealing, whereas the post-annealing resulted in the appearance of NiO peaks, and the decrease in the intensity of the peak of metallic Ni. Using X-ray photoelectron spectroscopy (XPS), phosphorous oxides were detected on the surface upon annealing at $650^{\circ}C$, and $700^{\circ}C$, which can be attributed to the phosphorous compounds originally existing in the deeper layers of the Ni films, which undergo sublimation and escape from the film upon annealing. Escape of phosphorous species from the bulk of Ni-P film upon annealing could leave a porous structure in the Ni films. Porous materials can be of potential applications in diverse fields due to their interesting physical properties such as high surface area, and methods for fabricating porous Ni films introduced here could be easily applied to a large-scale production, and therefore applicable in diverse fields such as environmental filters.

Synthesis, Dispersion, and Tribological Characteristics of Alkyl Functionalized Graphene Oxide Nanosheets for Oil-based Lubricant Additives (액체 윤활제 첨가제용 알킬 기능화된 산화 그래핀의 합성/분산 및 트라이볼로지적 특성)

  • Choe, Jin-Yeong;Kim, Yong-Jae;Lee, Chang-Seop
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.533-540
    • /
    • 2018
  • Graphene has been reported to be an excellent lubricant additive that reduces friction and wear when coated on the surface of various materials or when dispersed in lubricants as an atomic thin material with the low surface energy. In this study, alkyl functionalized graphene oxide (FGO) nanosheets for oil-based lubricant additives were prepared by using three types of alkyl chloride chemicals (butyl chloride, octyl chloride, and tetradecyl chloride). The chemical and structural properties of the synthesized FGOs were analyzed by Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), and transmission electron microscope (TEM). The synthesized FGOs were dispersed at 0.02 wt% in PAO-0W40 oil and its tribological characteristics were investigated using a high frequency friction/wear tester. The friction coefficient and the wear track width of poly alpha olefin (PAO) oil added with FGO-14 were tested by a ball-on-disk method, and the measured results were reduced by ~5.88 and ~3.8%, respectively compared with those of the conventional PAO oil. Thus, it was found that the wear resistance of PAO oil was improved. In this study, we demonstrated the successful functionalization of GO as well as the improvement of dispersion stability and tribological characteristics of FGOs based on various alkyl chain lengths.

Smoke Hazard Assessment of Cypress Wood Coated with Boron/Silicon Sol Compounds (붕소/실리콘 졸 화합물로 도포된 편백 목재의 연기유해성 평가)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • In this study, boron/silicon sol compounds were applied to wood for construction and durable materials, and fire risks were investigated in terms of smoke performance index (SPI), smoke growth index (SGI), and smoke intensity (SI). The compound was synthesized by reacting tetraethoxyorthosilicate with boric acid and boronic acid derivatives. Smoke characteristics were investigated using a cone calorimeter (ISO 5660-1) equipment for cypress wood. The fire intensity fixed the external heat flux at 50 kW/㎡. The smoke performance index measured after the combustion reaction increased between 13.4% and 126.7% compared with cypress wood. The fire risk due to the smoke performance index decreased in the order of cypress, phenylboronic acid/silicon sol (PBA/Si), (2-methylpropyl) boronic acid/silicon sol (IBBA/Si), boric acid/silicon sol (BA/Si). The smoke growth index decreased between 12.0% and 57.5% compared to the base specimen. The risk of fire caused by the smoke growth index decreased in the order of cypress, PBA/Si, IBBA/Si, BA/Si. The fire risk due to smoke intensity decreased between 3.2% and 57.8%, and in the order of cypress, PBA/Si, IBBA/Si, BA/Si. COpeak concentrations ranged between 85 and 93 ppm, and decreased between 37% and 43% compared to the base specimen. A comprehensive assessment of the fire risk on smoke hazards decreased in the order of cypress, PBA/Si, IBBA/Si, BA/Si.

Solderability of thin ENEPIG plating Layer for Fine Pitch Package application (미세피치 패키지 적용을 위한 thin ENEPIG 도금층의 솔더링 특성)

  • Back, Jong-Hoon;Lee, Byung-Suk;Yoo, Sehoon;Han, Deok-Gon;Jung, Seung-Boo;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • In this paper, we evaluated the solderability of thin electroless nickel-electroless palladium-immersion gold (ENEPIG) plating layer for fine-pitch package applications. Firstly, the wetting behavior, interfacial reactions, and mechanical reliability of a Sn-3.0Ag-0.5Cu (SAC305) solder alloy on a thin ENEPIG coated substrate were evaluated. In the wetting test, maximum wetting force increased with increasing immersion time, and the wetting force remained a constant value after 5 s immersion time. In the initial soldering reaction, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) and P-rich Ni layer formed at the SAC305/ENEPIG interface. After a prolonged reaction, the P-rich Ni layer was destroyed, and $(Cu,Ni)_3Sn$ IMC formed underneath the destroyed P-rich Ni layer. In the high-speed shear test, the percentage of brittle fracture increased with increasing shear speed.

Functional Cardiomyocytes Formation Derived from Parthenogenetic Mouse Embryonic Stem Cells (단위발생 유래 생쥐 배아줄기세포의 기능성 심근세포 형성)

  • Shin, Hyun-Ah;Kim, Eun-Young;Lee, Young-Jae;Lee, Keum-Sil;Park, Eun-Mi;Lee, Hoon-Taek;Chung, Kil-Saeng;Park, Se-Pill;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.2
    • /
    • pp.139-147
    • /
    • 2002
  • Objective : This study was to establish a reproducible differentiation system from the parthenogenetic mouse embryonic stem (P-mES02) cells into functional cardiomyocytes like as in vitro fertilization mouse embryonic stem (mES01) cells. Materials and Methods: To induce differentiation, P-mES02 cells were dissociated and aggregated in suspension culture environment for embryoid body (EB) formation. For differentiation into cardiomyocytes, day 4 EBs were treated with 0.75% dimethyl sulfoxide (DMSO) for another 4 days (4-/4+) and then were plated onto gelatin-coated dish. Cultured cells were observed daily using an inverted light microscope to determine the day of contraction onset and total duration of continuous contractile activity for each contracting focus. This frequency was compared with the results of DMSO not treated P-mES02 group (4-/4-) and mES01 groups (4-/4+ or 4-/4-). For confirm the generation of cardiomyocytes, beating cell masses were treated with trypsin-EDTA, dispersed cells were plated onto glass coverslips and incubated for 48 h. Attached cells were fixed using 4% paraformaldehyde and incubated with specific antibodies (Abs) to detect cardiomyocytes (anti-sarcomeric ? -actinin Ab, 1 : 100; anti-cardiac troponin I Ab, 1 : 2000) for 1 h. And the cells were finally treated with FITC or TRITC labelled 2nd Abs, respectively, then they were examined under fluorescence microscopy. Results: Rhythmically contracting areas in mES01 or P-mES02 cells were firstly appeared at 9 or 10 days after EBs plating, respectively. The highest cumulative frequency of beating EBs was not different in both treatment groups (mES01 and P-mES02, 4-/4+) with the results of 61.3 % at 13 days and 69.8% at 15 days, respectively. Also, the contracting duration of individual beating EBs was different from minimal 7 days to maximal 53 days. However, DMSO not treated groups (mES01 and P-mES02, 4-/4-) also had contracting characteristics although their frequency was a few compared to those of DMSO treated groups (6.0% and 4.0%). Cells recovered from the spontaneously contracting areas within EBs in both treated groups were stained positively with muscle specific anti-sarcomeric ? -actinin Ab and cardiac specific anti-cardiac troponin I Ab. Conclusion: This study demonstrated that the P-mES02 cell-derived cardiomyocytes displayed similarly structural properties to mES01 cell-derived cardiomyocytes and that the DMSO treatment enhanced the cardiomyocytes differentiation in vitro.

A Study of Soluble Pentacene Thin Film for Organic Thin Film Transistor (유기박막트랜지스터 적용을 위한 Soluble Pentacene 박막의 특성연구)

  • Gong, Su-Cheol;Lim, Hun-Seong;Shin, Ik-Sub;Park, Hyung-Ho;Jeon, Hyeong-Tag;Chang, Young-Chul;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • In this study, the pentacene thin films were prepared by the soluble process, and characterized fur the application of the organic thin film transistor(OTFT) device. To dissolve the pentacene material, two kinds of solvents such as toluene and chloroform were used, and the effects of these solvents on the properties of pentacene thin films coated on ITO/Glass substrate were investigated. Pentacene thin films were prepared by using spin-coating methode and characterized the surface morphology, crystalline and electrical properties. From the AFM measurement, the surface morphology of the pentacene film dissolved with chloroform was improved compared with the one dissolved with toluene solvent. XRD measurement showed that all prepared pentacene film samples were amorphous crystal phases without crystallization of the films. The electrical properties of the pentacene film dissolved with chloroform showed better results than the ones using toluene solvent by hall measurement system. The carrier concentration and the mobility values of pentacene films using chloroform solvent were found to be $-3.225{\times}10^{14}\;cm^{-3}$ and $3.5{\times}10^{-1}\;cm^2{\cdot}V^{-1}{\cdot}S^[-1}$, respectively. The resistivity was about $2.5{\times}10^2\;{\Omega}{\cdot}cm$.

  • PDF