• Title/Summary/Keyword: Coated layer

Search Result 1,798, Processing Time 0.035 seconds

Current Limiting Characterics of YBCO Coated Conductor for SFCL According to Insulation (절연층에 따른 전류제한기용 YBCO박막형 선재의 전류제한 특성)

  • Lee, Dong-Hyeok;Du, Ho-Ik;Kim, Min-Ju;Kim, Yong-Jin;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.211-211
    • /
    • 2009
  • YBCO coated conductor can change the stabilization layer for purpose and it leads advantages in Improvement of tape's critical properties and Application. Such properties rise possibility of using YBCO coated conductor for Superconductor Fault Current Limiter, therefore, we investigate changing properties under over current condition and limiting characteristics. In this study, YBCO coated conductor's current limiting characteristic stainless steel stabilization layer under condition of changing conductor's insulating layer. Consequently, the resistance followed insulating layer so we know that limiting characteristics.

  • PDF

Resistance Increase Behavior of HTS Wire with Stabilizer Layer on Applied Over-currents

  • Du, Ho-Ik;Kim, Min-Ju;Doo, Seung-Gyu;Kim, Yong-Jin;Han, Byoung-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.62-65
    • /
    • 2009
  • YBCO-coated conductors, called "second-generation wires," show a remarkably greater increase in the amount or speed of their resistance than BSCCO wires when a quench occurs. This is probably because of the specific resistance at their stabilizer layer, which also affects their voltage grade. YBCO coated conductors with copper as a stabilizer layer have a voltage grade of 1.5-2 V/cm, and those with stainless steel as a stabilizer layer have a voltage grade of about 0.5-0.6 V/cm. The voltage grade of YBCO coated conductors is important in selecting and applying superconducting wires to power instruments later. In this study, two kinds of YBCO-coated conductors with different stabilizer layers and one kind of BSCCO wire were prepared. Among them, based on the YBCO coated conductors that had a stainless steel stabilizer layer with a low voltage grade, five kinds of experimental samples for joining were prepared with the remaining two kinds of wires. Using the prepared samples, the current application properties and the resistance increase in the flux-flow and the quench states of the single wire and the joined wires were compared.

The Effect of Anodizing on the Electrical Properties of ZrO2 Coated Al Foil for High Voltage Capacitor

  • Chen, Fei;Park, Sang-Shik
    • Applied Science and Convergence Technology
    • /
    • v.24 no.2
    • /
    • pp.33-40
    • /
    • 2015
  • $ZrO_2$ and Al-Zr composite oxide film was prepared by vacuum assisted sol-gel dip coating method and anodizing. $ZrO_2$ films annealed above $400^{\circ}C$ have tetragonal structure. $ZrO_2$ layers inside etch pits were successfully coated from the $ZrO_2$ sol. The double layer structures of samples were obtained after being anodized at 100 V to 600 V. From the TEM images, it was found that the outer layer was $Al_2O_3$, the inner layer was multi-layer of $ZrO_2$, Al-Zr composite oxide and Al hydrate. The capacitance of $ZrO_2$ coated foil exhibited about 28.3% higher than that of non-coating foil after being anodized at 100 V. The high capacitance of $ZrO_2$ coated foils anodized at 100 V can be attributed to the relatively high percentage of inner layer in total thickness. The electrical properties, such as withstanding voltage and leakage current of coated and non-coated Al foils showed similar values. From the results, $ZrO_2$ and Al-Zr composite oxide is promising to be used as the partial dielectric of high voltage capacitor to increase the capacitance.

Fabrication of silver stabilizer layer by coating process using nano silver paste on coated conductor (나노실버페이스트를 사용하는 코팅공정에 의한 coated conductor의 은 안정화층 제조)

  • Lee, Jong-Beom;Kim, Byeong-Joo;Kim, Hye-Jin;Yoo, Yong-Su;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.1-4
    • /
    • 2009
  • Mechanical and electrical properties of silver stabilizer layer of coated conductor, which as prepared with nano silver paste as starting materials, have been investigated, Nano silver paste was coated on a YBCO film by dip coating process at a diping speed of 20m/min. Coated film was dried in air and heat treated at $400{\sim}700^{\circ}C$ in an oxygen atmosphere. Adhesion strength between YBCO and silver layer was measured by a tape est(ASTM D 3359). Hardness and electrical conductivity of the samples were measured by pencil hardness test (ASTM D 3363) and volume resistance test by LORESTA-GP (MITSHUBISHD, respectively. The sample heat-treated at $500^{\circ}C$ showed poor adhesion 1B, but samples heat treated at higher than $600^{\circ}C$ showed enhanced adhesion of 5B. The silver layer heat-treated at $700^{\circ}C$ showed the high hardness value larger than 9 H, low volume resistance, surface resistance value as well as superior current carrying capacity compared to sputtered silver. SEM observations showed that a dense silver layer was formed with a thickness of about $2{\mu}m$. Dip coated silver layer prepared by using nano silver paste showed superior electrical and mechanical characteristics.

Thermal diffusion behaviors of electrogalvanized steel sheets (전기아연도금강판의 열확산 거동)

  • 김영근
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.5
    • /
    • pp.320-328
    • /
    • 1995
  • The electroplated steel sheets were heated during the short periods(10~60 seconds) at high temperature ($360^{\circ}C$$500^{\circ}C$) in order to investigate thermal diffusion behaviors. When the steel sheets were heated for 10 seconds, all the coated layers were alloyed at $420^{\circ}C$ but at temperature lower than $400^{\circ}C$ the $\eta$ phase partially remained on the coated surface. At higher temperature, the longer the time for heat treatment the iron contents were increased in coated layer but the glossiness and whiteness of the coated surface were decreased. While the alloying phases of $\eta$, $\zeta$, $\delta_1$ and $\Gamma$ were appeared in the coated layer at the heat treatment temperature of $360^{\circ}C$, the phase was disappeared at $420^{\circ}C$ but the rests grew in size at the temperature of $440^{\circ}C$. When the heat treatment temperature and heating time were increased, the thickness of $\Gamma$ phase was rapidly increased to 0.8 $\mu\textrm{m}$. The optimum conditions for the heat treatment to prevent powdering of coated layer were obtained to heat it for 30 seconds at $400^{\circ}C$ and 10 seconds at $440^{\circ}C$, and the iron content in coated layer was suited to be 10 percents.

  • PDF

Effect of ceramic powder addition on the insulating properties of polymer layer prepared by dip coating method

  • Kim, S.Y.;Lee, J.B.;Kwon, B.G.;Hong, G.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • The mechanical, electrical and thermal characteristics of insulating materials may significantly affect the performance and reliability of electrical devices using superconductors. General method to provide insulating layer between coated conductors is wrapping coated conductor with Kapton tape. But uniform and compact wrapping without failure or delamination in whole coverage for long length conductor is not a simple task and need careful control. Coating of insulating layer directly on coated conductor is desirable for providing compact insulating layer rather than wrapping insulating layers around conductor. Ceramic added polymer has been widely used as an insulating material for electric machine because of its good electrical insulating properties as well as excellent heat resistance and fairy good mechanical properties. The insulating layer of coated conductor should have high breakdown voltage and possesses suitable mechanical strength and maintain adhesiveness at the cryogenic temperature where it is used and withstand stress from thermal cycling. The insulating and mechanical properties of polymer can be improved by adding functional filler. In this study, insulating layer has been made by adding ceramic particles such as $SiO_2$ to a polymer resin. The size, amount and morphology of added ceramic powder was controlled and their effect on dielectric property of the final composite was measured and discussed for optimum composite fabrication.

THE EFFECT OF SI-RICH LAYER COATING ON U-MO VS. AL INTERDIFFUSION

  • Ryu, Ho-Jin;Park, Jae-Soon;Park, Jong-Man;Kim, Chang-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.159-166
    • /
    • 2011
  • Si-rich-layer-coated U-7 wt%Mo plates were prepared in order to evaluate the diffusion barrier performance of the Si-rich layer in U-Mo vs. Al interdiffusion. Pure Si powder was used for coating the U-Mo plates by annealing at $900^{\circ}C$ for 1 h under vacuum of approximately 1 Pa. Si-rich layers containing more than 60 at% of Si were formed on U-7 wt%Mo plates. Diffusion couple tests were conducted in a muffle furnace at $560-600^{\circ}C$ under vacuum using Si-rich-layer-coated U-Mo plates and pure Al plates. Diffusion couple tests using uncoated U-Mo plates and Al-(0, 2 or 5 wt%)Si plates were also conducted for comparison. Si-rich-layer coatings were more effective in suppressing the interaction during diffusion couple tests between coated U-Mo plate and Al, when compared with U-Mo vs. Al-Si diffusion couples, since only small amounts of Al in the coating could be found after the diffusion couple tests. Si-rich-layer-coated U-7wt%Mo particles were also prepared using the same technique for U-7 wt%Mo plates to observe the microsturctures of the coated particles.

Effects of Oxide Layer Formed on TiN Coated Silicon Wafer on the Friction and Wear Characteristics in Sliding (미끄럼운동 시 TiN 코팅에 형성되는 산화막이 마찰 및 마멸 특성에 미치는 영향)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.260-266
    • /
    • 2002
  • In this study, the effects of oxide layer farmed on the wear tracks of TiN coated silicon wafer on friction and wear characteristics were investigated. Silicon wafer was used for the substrate of coated disk specimens, which were prepared by depositing TiN coating with 1 ${\mu}{\textrm}{m}$ in coating thickness. AISI 52100 steel ball was used fur the counterpart. The tests were performed both in air for forming oxide layer on the wear track and in nitrogen to avoid oxidation. This paper reports characterization of the oxide layer effects on friction and wear characteristics using X-ray diffraction(XRD), Auger electron spectroscopy(AES), scanning electron microscopy (SEM) and multi-mode atomic force microscope(AFM).

Effects of oxide layer formed on TiN coated silicon wafer on the friction characteristics

  • Cho, C.W.;Lee, Y.Z.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.167-168
    • /
    • 2002
  • In this study, the effects of oxide layer formed on the wear tracks of TiN coated silicon wafer on friction characteristics were investigated. Silicon wafer was used for the substrate of coated disk specimens, which were prepared by depositing TiN coating with $1\;{\mu}m$ in coating thickness. AISI 52100 steel balls were used for the counterpart. The tests were performed both in air for forming oxide layer on the wear track and in nitrogen to avoid oxidation. This paper reports characterization of the oxide layer effects on friction characteristics using X-ray diffraction (XRD). scanning electron microscopy (SEM) and friction force microscope (FFM).

  • PDF

Numerical Investigation of Forming Limit of Coated Sheet Metals (코팅제의 변형한계에 대한 수치적연구)

  • 정태훈;김종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.460-464
    • /
    • 1997
  • By the used of a similar numerical method as in the previous paper, the forming limit stain of coatedsheet metals is investigated in which the FEM is applied and J2G(J/sab 2/-Gotoh's corner theory) is utilized as the plasticity constitutive equation. Coated two-layer sheets and sheets bonded with dissimilar sheets on both surface planes are stetched in a plane-strain atate, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such composite sheets are clearly illustrated. It is concluded that, in the coated state, the higher limiting strain of one layer is reduced due to the lower limiting stain of the other layer and vice, and does not necessarily obey the rule of linear combination of the limiting stain of each layer weighted according thickness.

  • PDF