• 제목/요약/키워드: Coated Fuel Particle

검색결과 47건 처리시간 0.031초

나노 입자가 포함된 연료 액적의 분열 특성 연구 (Breakup Characteristics of Fuel Droplet Including Nanoparticles)

  • 이재빈;신동환;이민정;김남일;이성혁
    • 한국분무공학회지
    • /
    • 제17권4호
    • /
    • pp.192-196
    • /
    • 2012
  • This paper reports on breakup characteristics of fuel droplet which includes metal nanoparticles. In order to develop a new injection system for nanoparticle-coated layers overcoming the conventional flame spray system, fundamental experiments were conducted to examine the interaction between a fuel droplet with nanoparticles and the external energy induced by the laser. In the experiments, this study used nickel nanoparticles whose size was under 100 nm to mix with kerosene as the fuel, and utilized a syringe pump and a metal needle to inject a fuel droplet. In particular, the Nd-YAG laser was adopted to give additional energy to the nanoparticles for evaporation of a fuel droplet containing nanoparticles. When the laser energy as 96 mJ was irradiated during the injection, it was observed that such an explosive evaporation occurred to break up a fuel droplet including nanoparticles, making the rapid increase in the ratio surface area to liquid volume. From this work, we suggest the possibility that the laser energy can be used for rapid evaporation of a fuel droplet.

피복입자핵연료에서 증착조건이 탄화규소층의 특성에 미치는 영향 (Effect of Deposition Parameters on the Property of Silicon Carbide Layer in Coated Particle Nuclear Fuels)

  • 김연구;김원주;여승환;조문성
    • 한국분말재료학회지
    • /
    • 제23권5호
    • /
    • pp.384-390
    • /
    • 2016
  • Tri-isotropic (TRISO) coatings on zirconia surrogate beads are deposited using a fluidized-bed vapor deposition (FB-CVD) method. The silicon carbide layer is particularly important among the coated layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO-coated particles. In this study, we obtain a nearly stoichiometric composition in the SiC layer coated at $1400^{\circ}C$, $1500^{\circ}C$, and $1400^{\circ}C$ with 20 vol.% methyltrichlorosilane (MTS), However, the composition of the SiC layer coated at $1300-1350^{\circ}C$ shows a difference from the stoichiometric ratio (1:1). The density decreases remarkably with decreasing SiC deposition temperature because of the nanosized pores. The high density of the SiC layer (${\geq}3.19g/cm^2$) easily obtained at $1500^{\circ}C$ and $1400^{\circ}C$ with 20 vol.% MTS did not change at an annealing temperature of $1900^{\circ}C$, simulating the reactor operating temperature. The evaluation of the mechanical properties is limited because of the inaccurate values of hardness and Young's modulus measured by the nano-indentation method.

열 플라스마 용사법에 의해 코팅된 SOFC 용 세라믹 연결재인 $La_{0.8}Ca_{0.2}CrO_3$ 특성 연구 (Characterization and Preparation of $La_{0.8}Ca_{0.2}CrO_3$ Ceramic Interconnect Prepared by Thermal Plasma Spray Coating Process for SOFC)

  • 박광연;임탁형;이승복;박석주;송락현;신동렬
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.201-206
    • /
    • 2010
  • In present work, $La_{0.8}Ca_{0.2}CrO_3$ (LCC) ceramic interconnect layer for SOFC was prepared by using thermal plasma spray coating process. The LCC powders were synthesized by Pechini method and calcined at the temperature of $1000^{\circ}C$. The prepared LCC powder was characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), particle counter, BET analysis, respectively. In addition, basic and essential properties of LCC layer coated by thermal plasma spray coating process such as the morphology of surface and cross section for coated layer, gas leak rate, and electrical conductivity were analyzed and discussed. Based on these experimental results, it can be concluded that the LCC layer coated by thermal plasma spray coating process can be suitable as a ceramic interconnect of SOFC operated at $800^{\circ}C$.

CeO2 코팅을 통한 Cu 입자의 입성장 억제 효과에 관한 연구 (Effect of CeO2 Coating on the Grain Growth of Cu Particles)

  • 유희준;문지웅;오유근;문주호;황해진
    • 한국분말재료학회지
    • /
    • 제12권6호
    • /
    • pp.413-421
    • /
    • 2005
  • Copper is able to work as a current collector under wide range of hydrocarbon fuels without coking in Solid oxide fuel cells (SOFCs). The application of copper in SOFC is limited due to its low melting point, which result in coarsening the copper particle. This work focuses on the sintering of copper powder with ceria coating layer. Ceria-coated powder was prepared by thermal decomposition of urea in $Ce(NO_3)_3\cdot6H_2O$ solution, which containing CuO core particles. The ceria-coated powder was characterized by XRD, ICP, and SEM. The thermal stability of the ceria-coated copper in fuel atmosphere $(H_2)$ was observed by SEM. It was found that the ceria coating layer could effectively hinder the grain growth of the copper particles.

고체연료 램젯용 HTPB 연료그레인에 첨가제와 점화보조제가 미치는 영향 (Effects of Additives and Ignition Support Material on HTPB Fuel Grains for Solid Fuel Ramjet)

  • 정우석;백승관;정연수;권태수;박주현;김인철;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.957-967
    • /
    • 2017
  • 첨가제와 점화 보조제가 적용된 고체연료 램젯 용 연료 그레인의 연소시험을 수행하여 점화 지연과 연소 효율을 확인하였다. 연료 그레인은 HTPB에 AP 파우더 15 wt.% 보론 입자 5 wt.%가 혼합된 형태로 구성되어 있다. 연료 그레인에 $NC/BKNO_3$와 Composite 추진제로 이루어진 점화보조제를 도포하여 우수한 점화성능을 확보하였다. 에탄올 블렌딩 과산화수소 가스발생기를 통해 램젯 연소실의 공기와 가깝도록 온도, 압력, 산소 조성을 조절한 산화제 가스를 유속 $200kg/m^2s$ 으로 흐르도록 설정하였다. 실험 결과, 점화보조제의 작동을 통해 연료그레인에서 0.5초의 점화 지연시간을 파악하였다. 또한 보론의 연소를 통해 8 bar의 일정한 연소실 압력과 0.86의 높은 연소 효율을 확인하였다.

  • PDF

MEA 제조 방법에 따른 직접 메탄올 연료전지의 성능저하 현상 평가 (Effect of MEA fabrication on the performance degradation of DMFC)

  • 조윤환;조용훈;박현서;원호연;성영은
    • 신재생에너지
    • /
    • 제3권1호
    • /
    • pp.60-67
    • /
    • 2007
  • Catalyst coated membrane [CCM] type and catalyst coated substrate [CCS] type of membrane electrode assembly [MEA] were manufactured and evaluated their performance. Degradation test were conducted to find the difference of long term stability in two types of MEA and the factor for performance degradation problem occurred. Performance degradation test of single cell in two different types of MEA were carried out when current density was $200mA/cm^{2}$. The degradation test had proceeded for 230 hours and performance degradation was checked by I-V curve and impedance measurement at regular intervals. Also, MEA before/after operation and changes of catalyst layer were characterized by SEM, TEM, and XRD. Maximum power density of CCM type was higher than that of CCS type. Meanwhile, an increase of particle size of catalyst and an increase of impedance resistance after long term operation were observed. In the case of using CCM type MEA, the performance was deteriorated 38% of initial performance. In the case of using CCS type MEA, the performance was deteriorated 43% of initial performance. In consideration of difference of initial performance, performance of CCM type is higher than that of CCS type but both types had similar problems during degradation test.

  • PDF

Preparation of Platinum catalysts for PEM Fuel cells

  • Sasikumar G.;Ryu H.
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2003년도 연료전지심포지움 2003논문집
    • /
    • pp.189-192
    • /
    • 2003
  • In this work, we have prepared platinum catalyst by various methods, investigated fuel cell performance and compared performance with commercially available $20\%$ Pt supported on carbon (Pt/C) catalyst. We have found that Pt/C prepared by reduction of chloroplatinic acid in mixed solvent (water+ethylene glycol) gives better performance compared to that produced by reduction of aqueous chloroplatinic acid, which can be attributed to smaller catalyst particle size and lower agglomeration in the mixed solvent. We have also prepared a novel platinum electrocatalyst by depositing platinum on Nafion coated carbon powder and it shows great promise. The performance of electrode prepared using $20\%Pt$ onn Nafion coated carbon mixed with Pt/C was found to be higher than the performance of electrodes using commercially available $20\%$ Pt/C, up to a current density of about $1100mA/cm^2$. The cell voltages obtained were respectively 621 and 603mV, at a current density of: $1000mA/cm^2$, in a single cell using $0.25mgPt/cm^2$ and Nafion 10035 membrane at $80^{\circ}C$ using hydrogen/oxygen reactants at 1 atm pressure.

  • PDF

고체산화물 연료전지용 (Ca,Sr)도핑된 LaCrO3계 세라믹 연결재 코팅층의 특성 연구 (Characteristics of (Ca,Sr)-doped LaCrO3 Coating Layer for Ceramic Interconnect of Solid Oxide Fuel Cell)

  • 이길용;백동현;송락현
    • 전기화학회지
    • /
    • 제8권4호
    • /
    • pp.162-167
    • /
    • 2005
  • 본 연구는 Pechini법을 이용하여 Ca과 Sr이 도핑된 $LaCrO_3$계의 $La_{0.6}Ca_{0.41}CrO_3$ (LCC41), $La_{0.8}Sr_{0.05}Ca_{0.15}CrO_3$, (LSCC), $La_{0.75}Ca_{0.27}CrO_3$ (LCC27) 분말들을 제조하여, 분말의 소결 특성 및 코팅층의 특성을 조사하였다. 제조된 LCC41, LSCC, LCC27 분말은 각각 0.6, 0.9, $1.5{\mu}m$의 평균 입자크기를 가졌으며, LCC41의 경우 $1400^{\circ}C$에서 98% 이상의 소결 밀도를 나타내었다. 연료극 지지체상의 LSCC 코팅은 LCC41층에 있는 Ca의 이동을 어느 정도 억제하는 역할을 하는 것으로 나타났다. 대기 용사 코팅된 LCC27은 치밀한 코팅막을 형성하였으며, 이 코팅층 위에 LCC41을 습식 코팅할 경우 더욱 치밀하고 높은 전기전도도를 갖는 코팅막을 얻을 수 있었다. 용사코팅된 LCC27, 습식 코팅된 LCC41는 높은 전기전도도를 나타내었으나, LSCC의 경우 낮은 소결성으로 인해 전기전도도가 작게 나타났다.