• Title/Summary/Keyword: Coat protein

Search Result 369, Processing Time 0.031 seconds

Cloning and Sequencing of Coat Protein Gene of the Korean Isolate of Rice stripe virus

  • Hong, Yeon-Kyu;Kwak, Do-Yeon;Park, Sung-Tae;Choi, Jo-Im;Lee, Key-Woon;Lee, Bong-Choon
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.313-315
    • /
    • 2004
  • The coat protein gene of Korean isolate of Ricer stripe virus (RSV-Kr) was cloned and its nucleotide sequence was determined. Total RNA was extracted from infected leaves and RSV viral RNA was detected by using RT-PCR with specific primer of coat protein gene. The result of RT-PCR showed a specific band. Purified RT-PCR products of coat protein gene were ligated into the pGEM-T Easy plasmid vector and cloned cDNA was obtained for nucleotide sequence determination. Coat protein gene of RSV-Kr consisted of 969 bp long encoding a protein of 322 amino acids. RSV-Kr showed 94%-99% sequence identities to that of Japanese- and Chinese isolates.

Sequence Analysis of the Coat Protein Gene of a Korean Isolate of Iris Severe Mosaic Potyvirus from Iris Plant

  • Park, Won-Mok;Lee, Sang-Seon;Park, Sun-Hee;Ju;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.36-42
    • /
    • 2000
  • The coat protein gene of iris severe mosaic potyvirus, which was isolated in Korea, ISMV-K, from iris plant was cloned and its nucleotide sequence was determined. The coat protein of the virus contained 252 amino acid residues, including five potential N-glyxosylation site motifs. The coat protein of ISMV-K has 99.1% and 98.4% sequence identities with those of the Netherlands isolate of ISMV (ISMV-Ne) form crocus for the nucleotide and amino acids, respectively. The coat protein of ISMV-K has 50.4% to 60.3% nucleotide sequence identities and 47.3% to 55.7% amino acid identities with those of other 21 potyviruses, indicating ISMV to be a distinct species of the genus. The coat protein of ISMV-K was closely related with bean yellow mosaic virus and clover yellow vein virus in the phylogenetic tree analysis among the potyviruses analyzed. ISMV was easily and reliably detected from virus-infected iris leaves by RT-PCR with a set of the virus-specific primers.

  • PDF

Structural Studies of Membrane Protein by Solid-state NMR Spectroscopy (고체상 핵자기공명 분광법을 이용한 막단백질의 구조연구)

  • Kim, Yongae
    • Analytical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.388-392
    • /
    • 2004
  • Structural studies of membrane proteins, importantly involving interpretation of genomics information, many signaling pathway and major drug target for drug discovery, are having difficulty in characterizing the function using conventional solution nmr spectroscopy and x-ray crystallography because phospholipid bilayers hindered fast tumbling and crystallization. Here, we studied the structure of the pf1 coat protein in oriented phospholipid bilayers by home-built solid-state NMR probe. Bacteriophage pf1 was purified from Paeudomonas Aeruginosa and coat protein of bacteriophage pf1 was isolated from DNA and other proteins.

Development of Recombinant Coat Protein Antibody Based IC-RT-PCR and Comparison of its Sensitivity with Other Immunoassays for the Detection of Papaya Ringspot Virus Isolates from India

  • Sreenivasulu, M.;Gopal, D.V.R. Sai
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • Papaya ringspot virus (PRSV) causes the most widespread and devastating disease in papaya. Isolates of PRSV originating from different geographical regions in south India were collected and maintained on natural host papaya. The entire coat protein (CP) gene of Papaya ringspot virus-P biotype (PRSV-P) was amplified by RTPCR. The amplicon was inserted into pGEM-T vector, sequenced and sub cloned into a bacterial expression vector pRSET-A using a directional cloning strategy. The PRSV coat protein was over-expressed as a fusion protein in Escherichia coli. SDS-PAGE gel revealed that CP expressed as a ~40 kDa protein. The recombinant coat protein (rCP) fused with 6x His-tag was purified from E.coli using Ni-NTA resin. The antigenicity of the fusion protein was determined by western blot analysis using antibodies raised against purified PRSV. The purified rCP was used as an antigen to produce high titer PRSV specific polyclonal antiserum. The resulting antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) assay and compared its sensitivity levels with ELISA based assays for detection of PRSV isolates. IC-RT-PCR was shown to be the most sensitive test followed by dot-blot immunobinding assay (DBIA) and plate trapped ELISA.

Production and Evaluation of Monoclonal Antibodies Against Recombinant Coat Protein of Lily mottle virus for Western Blotting and Immono-blot Analysis

  • Chung, Bong-Nam;Yoon, Ju-Yeon;Choi, Gug-Sun
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.225-230
    • /
    • 2009
  • Lily mottle virus (LMoV) causes flower quality reduction in Lilium spp. The coat protein gene was RT-PCR-amplified from total RNA extracted from infected lily leaves and the amplified fragment was cloned into the pRSET expression vector tagged with a His-MBP. The plasmid of recombinant coat protein was used to transform an Escherichia coli strain pLysS and was expressed. The coat protein was purified by affinity chromatography using a Ni-NTA resin. The identity of the purified protein was confirmed by SDS-PAGE. The in vitro-expressed protein was used for immunization of mice. The polyclonal and monoclonal antibodies reacted specifically for the detection of LMoV in lily extracts in Western blot. Moreover the monoclonal antibodies reacted with lily extracts in DAS-ELISA with no unspecific or heterologous reactions against other non-serologically related viruses, but the polyclonal antibodies revealed a weak reaction against both infected lily and healthy control.

Expression of prune dwarf Ilarvirus coat protein sequences in Nicotiana benthamiana plants interferes with PDV systemic proliferation

  • Raquel, Helena;Lourenco, Tiago;Moita, Catarina;Oliveira, M. Margarida
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.75-85
    • /
    • 2008
  • Prune dwarf virus (PDV) is an Ilarvirus systemically infecting almond trees and other Prunus species and spreading through pollen, among other means. We have studied strategies based on coat protein (cp) gene to block PDV replication in host plant cells. A Portuguese isolate of PDV was obtained from infected almond leaves and used to produce the cDNA of the cp gene. Various constructs were prepared based on this sequence, aiming for the transgenic expression of the original or modified PDV coat protein (cpPDVSense and cpPDVMutated) or for the expression of cpPDV RNA (cpPDVAntisense and cpPDVwithout start codon). All constructs were tested in a PDV host model, Nicotiana benthamiana, and extensive molecular characterization and controlled infections were performed on transformants and their progenies. Transgenic plants expressing the coat protein RNA were able to block the proliferation of a PDV isolate sharing only 91% homology with the isolate used for cpPDV cloning, as evaluated by DAS-ELISA on newly developed leaves. With cp expression, the blockage of PDV proliferation in newly developed leaves was only achieved with the construct cpPDV Mutated, where the coat protein has a substitution in the 14th aa residue, with arginine replaced by alanine. This result points to a possible role of the mutated amino acid in the virus ability to replicate and proliferate. This work reveals the possibility of achieving protection against PDV through either coat protein RNA or mutated cp sequence.

Analysis and Detection of Coast Protein Gene of Barley Yellow Mosaic Virus and Barley Mield Mosaic Virus by RT-PCR (RP-PCR을 이용한 보리누른모자이크바이러스 (BaYMV)와 보리마일드모자이크바이러스(BaMMV)의 외피단백질 유전자 검정 및 해석)

  • 이귀재
    • Korean Journal Plant Pathology
    • /
    • v.14 no.4
    • /
    • pp.314-318
    • /
    • 1998
  • Using the reverse transcription polymerase chain reaction (RT-PCR), a rapid and sensitive assay method for the detection and identification of barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV) was adapted. Two units of primers from each virus were selected and used for the determination of two different viruses. PCR fragments of BaYMV (ca. 0.9kb) and BaMMV (ca. 0.8kb) were obtained from the designed method for the assay of BaYMV and BaMMV coat protein. PT-PCR fragments were cloned using vector pT7 Blue and the sequences of the selected clones were analyzed. coat protein of BaYMV and that of BaMMV consisted of 297 amino acids (891 nucleotides) and 251 amino acids (753 nucleotides), respectively. The snalysis of coat protein genes from these two viruses showed that 45.6% of nucleotides sequence ad 34.9% of amino acid in BaYMV were homologous to those in BaMMV.

  • PDF

PVY Resistant Transgenic Potato Plants (cv Claustar) Expressing the Viral Coat Protein

  • Gargouri-Bouzid Radhia;Jaoua Leila;Mansour Riadh Ben;Hathat Yemna;Ayadi Malika;Ellouz Radhouane
    • Journal of Plant Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.143-148
    • /
    • 2005
  • The coat protein mediated resistance to potato virus Y is assessed here in transgenic potato plants (Solanum tuberosum L., cv Claustar). Therefore, the corresponding cDNA from tunisian isolate of the virus was cloned into Agrobacterium tumefaciens binary vector. The transgenic lines were subsequently analysed for the presence and expression of the transgene. The CP cDNA copy number was determined for kanamycin resistant plants. Three selected transgenic lines and their S1 progeny resulting from tuber germination showed a high protection level against the virus. These data appear to support the hypothesis that the virus resistance is mediated by the translated viral coat protein expressed in transgenic potato lines.

Complementary DNA Cloning and Nucleotide Sequence Analysis of Coat Protein Gene from TMV Tomato Strain (토마토에서 분리된 담배 모자이크 바이러스 외피단백질 유전자의 cDNA 클로닝 및 염기서열 분석)

  • 이청호;이영기;강신웅;박은경
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.2
    • /
    • pp.101-106
    • /
    • 1996
  • Tobacco mosaic virus (TMV) tomato strain was isolated from tomato "Seo-Kwang" in Korea. The virion was purified by density gradient centrifugation, and total viral RNA was isolated from the purified particles. Coat protein (CP) cDNA of the virus was synthesized by RT-PCR, and the purified cDNA fragment was subcloned to pBluescript II SK-. The analysis of nucleotide sequence showed that this cDNA was 693 nucleotides long from the insert of clone p1571 and p1572 which contain complete codons of the viral coat protein gene (474 nucleotides) and 3' untranslated region. The nucleotides of coat protein encoding cDNA of the strain were 6 nucleotides less than that of TMV common strain isolated from tobacco plant in Korea. The CP gene showed 70% maximum homology with that of the common strain in the nucleotide level and 86% maximum homology in amino acid level.cid level.

  • PDF

Gene Expression in The Fifth Generation of TMV Resistant Transgenic Tobacco Plane at Elevated Temperature (TMV 저항성 형질전환 연초식물체 제 5 세대에서 유전자 안정성 및 고온조건에서의 유전자 발현)

  • 이기원;박성원;이청호;박은경;김상석;최순용
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.245-250
    • /
    • 1998
  • Tobacco mosaic virus(TMV) coat protein cDNA was transformed to Nicotiana tabacum cv. NC82 and the transgenic tobacco plants resistant to TMV infection were isolated in the next generation. The expression of TMV coat protein cDNA and genetic stability of the fifth generation of TMV resistant transgenic tobacco plants at the higher temperature were investigated. The TMV coat protein cDNA was amplified by genomic PCR in all the TMV resistant transgenic tobacco plants. The TMV coat protein expressed in the transgenic tobacco plants was detected at very low level by immunoblot hybridization. Even in tansgenic plants that showed the viral symptom only on very late sucker growth (delay type plants), the coat protein expression in the suckers was much less than that of susceptible tobacco infected with TMV. The TMV coat protein expressed in the transgenic tobacco plants was below 0.01% of total protein. Transcription and expression of the coat protein cDNA in delay type plants were observbed at high temperature (38$^{\circ}C$), and TMV replication was suppressed at both 28$^{\circ}C$ and 38$^{\circ}C$. This indicates that unlike the resistance conferred by 'N' gene. TMV resistance of transgenic tobacco plant won't break down at high temperature.

  • PDF