• Title/Summary/Keyword: Coastal soil

Search Result 527, Processing Time 0.027 seconds

A Study on the Relationship between the Physical Properties of Soil and the Compression Index of Soft Clay in Gyungnam Coastal Region (경남해안지역 연약점토의 토질특성과 압축지수와의 상관성에 관한 연구)

  • 장정욱;최성민;박춘식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.282-289
    • /
    • 2001
  • This study analyzed the relationship between the physical properties of soil and the compression index of the soft clay in Gyungnam coastal region. Tests of physical and mechanical properties of soil have been carried out under the undisturbed condition at 82 Gimhae, 18 Jinhae and 27 Geojespecimens. The result showed that Terzaghi & Peck's empirical equation of the compression index were not applicable. The compression index of soft clay in Gyungnam coastal region was correlated with the water contents, the liquid limit and the initial void ratio. Among these, the initial void ratio showed the highest correlation with the compression index of soft clay in Gyungnam coastal region and the relationship is shown in the following. (1) The compression index of soft clay in Gyungnam coastal region is represented as follows: $C_c=0.74(e_o-0.7$ (2) The relationship between compression index and the swelling index in Gyungnam coastal region is represented as follows: $C_s=(1/8-1/15)C_c$.

  • PDF

Succession and Stand Dimension Attributes of Pinus thunbergii Coastal Forests after Damage from Diplodia Tip Blight around the Sakurajima Volcano, Southern Kyushu, Japan

  • Teramoto, Yukiyoshi;Shimokawa, Etsuro;Ezaki, Tsugio;Jang, Su-Jin;Kim, Suk-Woo;Lee, Youn-Tae;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.6
    • /
    • pp.481-489
    • /
    • 2018
  • In this study, the succession and stand dimension attributes related to the disaster prevention function of Pinus thunbergii coastal forests were examined after damage from Diplodia tip blight. In 2015, 101 years after the Taisho eruption, field investigations were performed on the vegetation, soil thickness, and pH of surface soil of P. thunbergii coastal forests in western Sakurajima (Hakamagoshi plot) and Taisho lava flows in southeastern Sakurajima (Seto plot). The Hakamagoshi plot had more woody plant species with larger basal areas than that in the Seto plot. The mean age and height, maximal age and height of plant species, and H/D ratio were all larger in the Hakamagoshi plot than in the Seto plot. These results may be explained by the relatively smaller effect of volcanic ash and gas on forests in the Hakamagoshi plot compared to the Seto plot, resulting in a more suitable environment for many plant species. Although P. thunbergii coastal forests in Sakurajima are currently recovering from damages owing to Diplodia tip blight, there has not yet been a sufficient recovery compared to the results from a 1997 study. Furthermore, the results of assessment based on the H/D ratio and abundance of trees in P. thunbergii forests indicate that both regions are not yet effective in disaster prevention. Thus, it is necessary to establish Pinus trees, which can adjust to harsh environments like coastal areas and are resistant to volcanic ash and gas, to enhance the disaster prevention function of P. thunbergii coastal forests in volcanic regions. It may also be helpful to establish coastal forests with ectotrophic mycorrhizal fungi and organic matter coverage. Additionally, it is necessary to ensure the continuous maintenance of stand density and soil quality, and further develop efforts to prevent Diplodia tip blight and promote forest recovery.

Effect of Soil Factors on Vegetation Values of Salt Marsh Plant Communities: Multiple Regression Model

  • Ihm, Byung-Sun;Lee, Jeom-Sook;Kim, Jong-Wook;Kim, Joon-Ho
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.361-364
    • /
    • 2006
  • The objective of the current study was to characterize and apply multiple regression model relating to vegetation values of the plant species over salt marshes. For each salt marsh community, vegetation and soil variables were investigated in the western coast and the southern coast in South Korea. Osmotic potential of soil and $Cl^-$ content of soil as independent variable had positive and negative influences on vegetation values. Multiple regression model showed that vegetation values of 14 coastal plant communities were determined by pH of soil, osmotic potential of soil and sand content. The multiple regression equation may be applied to the explanation of distribution and abundance of plant communities with exiting ordination plots.

Long-term Investigation of Soil Chemical Properties in Paddy Fields Located in Different Topographic Areas of Jeonbuk Province

  • Ahn, Byung-Koo;Ko, Do-Young;Lee, Chang-Kyu;Kim, Jin-Ho;Song, Young-Ju;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.275-281
    • /
    • 2016
  • The aim of this study was to examine the selected soil chemical properties of paddy fields in different topographic areas to efficiently manage nutrient valances of the paddy fields in Jeonbuk Province. Three-hundred soil sampling sites in paddy fields were selected from the different topographic areas in Jeonbuk Province. The soil samples were collected every four years from 1999 to 2015. Soil pH and exchangeable K and Mg concentrations declined during the experimental periods. However, almost all the chemical properties were within the proper levels for paddy soil, except exchangeable Mg concentration. Distributed areas of the paddy fields with soil pH below 5.5 continuously increased, but the paddy fields with lower concentrations of soil organic matter and available $P_2O_5$ than the proper levels declined after 2007. In addition, the paddy fields with available $SiO_2$ below the proper concentration decreased from 83.3% of the total paddy fields studied in 1999 to 61.0% of the total fields investigated in 2015. The paddy fields with lower exchangeable K and Mg than the proper levels increased after 2003 whereas the fields with lower exchangeable Ca concentration decreased. Dominant landform of coastal and plain areas was fluvio-marine plains that was distributed in 53.7% and 40.9%, respectively. Local valley and fans was a dominant landform of mountainous and middle-mountainous areas, which was 51.8% and 67.6%, respectively. Dominant soil textures distributed in coastal and plain areas were silty loam and loam. Those in mountainous and middle-mountainous areas were sandy loam and loam, respectively. Soil pH was relatively higher in coastal area and the comparatively higher content of soil organic matter was found in costal area than other areas. The concentrations of available $P_2O_5$, exchangeable Ca, and exchangeable Mg were generally higher in mountainous, coastal, plain areas, respectively, but available $SiO_2$ and exchangeable K concentrations were not significantly different among the different topographic areas.

Construction and Application of the Hydraulic Scale Model for the Analysis of Sediment Transport by Tsumani (지진해일에 의한 토사이동 해석을 위한 수리모형장치 제작 및 적용성 평가)

  • Youm, Min Kyo;Lee, Baek Gun;Min, Byung Il;Lee, Jung Lyul;Suh, Kyung-Suk
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.201-207
    • /
    • 2013
  • Soil liquefaction by tsunami or wave induced currents can cause serious damages to coastlines and coastal infrastructures. Although liquefaction caused by regular waves over sea beds has been extensively investigated, studies of tsunami-induced liquefaction near coastal area have been relatively rare. In this work, the hydraulic scale model has been designed and constructed to investigate the variations of wave height and sediment transport by tsunami. The distorted hydraulic scale model based on the Froude similarity was adopted to represent hydrodynamics and sediment transport in a coastal area. The scale model was composed of control box, screw axis, wave paddle and rotating coastal structure.

Effect of plate slope and water jetting on the penetration depth of a jack-up spud-can for surficial sands

  • Han, Dong-Seop;Kim, Seung-Jun;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.263-278
    • /
    • 2014
  • The spudcan requires the suitable design considering the soil, platform, and environmental conditions. Its shape needs to be designed to secure sufficient reaction of soil so that it can prevent overturning accidents. Its shape also has to minimize the installation and extraction time. Even in the same soil condition, the reaction of soil may be different depending on the shape of spud can, mainly the slope of top and bottom plates. Therefore, in this study, the relation between the slope of plates and the reaction of soil with and without water jetting is analyzed to better understand their interactions and correlations. For the investigation, a wind turbine installation jack-up rig (WTIJ) is selected as the target platform and the Gulf of Mexico is considered as the target site. A multi layered (sand overlying two clays) soil profile is applied as the assumed soil condition and the soil-structure interaction (SSI) analysis is performed by using ANSYS to analyze the effect of the slope change of the bottom plate and water jetting on the reaction of soil. This kind of investigation and simulation is needed to develop optimal and smart spudcan with water-jetting control in the future.

Field study of the process of densification of loose and liquefiable coastal soils using gravel impact compaction piers (GICPs)

  • Niroumand, Bahman;Niroumand, Hamed
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.479-487
    • /
    • 2022
  • This study evaluates the performance of gravel impact compaction piers system (GICPs) in strengthening retrofitting a very loose silty sand layer with a very high liquefaction risk with a thickness of 3.5 meters in a multilayer coastal soil located in Bushehr, Iran. The liquefiable sandy soil layer was located on clay layers with moderate to very stiff relative consistency. Implementation of gravel impact compaction piers is a new generation of aggregate piers. After technical and economic evaluation of the site plan, out of 3 experimental distances of 1.8, 2 and 2.2 meters between compaction piers, the distance of 2.2 meters was selected as a winning option and the northern ring of the site was implemented with 1250 gravel impact compaction piers. Based on the results of the standard penetration test in the matrix soil around the piers showed that the amount of (N1)60 in compacted soils was in the range of 20-27 and on average 14 times the amount of (1-3) in the initial soil. Also, the relative density of the initial soil was increased from 25% to 63% after soil improvement. Also the safety factor of the improved soil is 1.5-1.7 times the minimum required according to the two risk levels in the design.

Determination of Permissible Shear Stresses on Vegetation Mats by Soil Loss Evaluation (토양 손실 평가에 의한 식생매트의 허용 소류력 결정)

  • Lee, Du Han;Rhee, Dong Sop;Kim, Myounghwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5956-5963
    • /
    • 2013
  • By the activation of environment-friendly river works, application of vegetation mats is increasing, however, evaluation techniques for hydraulic stability of vegetation mats are not presented. This study is conducted to develop the objective test method for vegetation mats. Two kind of vegetation mats are tested by the real scale experiments, and hydraulic quantities are measured and analyzed to evaluate acting shear stresses. To evaluate soil loss, Terrestrial 3D LiDAR measurement is conducted and soil loss index are calculated from changes of bed elevation. Quantified evaluation for permissible shear stresses is conducted by graphical method for acting shear stresses and soil loss index. By the results of precision survey, changes of sub soil are limited to local range in stable cases and relatively large changes of sub soil which is similar to natural river bed are detected in unstable cases. From the study, evaluation of permissible shear stresses by ASTM D 6040 is avaliable in the failure mechanism and failure criteria by soil loss index.

Adsorption and residues of EPN in the soil of Cheju Island (제주도 토양에서 EPN의 용탈과 잔류)

  • Kim, Jung-Ho;Kam, Sang-Kyu
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.1
    • /
    • pp.19-25
    • /
    • 2000
  • The adsorption and leaching of organophosphorus pesticide, EPN (O-ethyl-O-4 -nitrophenyl phenyl phosphonothioate) were investigated in Namwon soil(black volcanic soil), Aewol soil(very dark brown volcanic soil) and Mureung soil(dark brown nonvolcanic soil) in Cheju Island. The residue of EPN was surveyed on coastal environment of Cheju in Aug. 1996. The organic matter of Namwon soil, Aewol soil and Mureung soil was 19.8, 6.2 and 2.4%, respectively. The cation exchange capacity of Namwon soil, Aewol soil and Mureung soil was 24.8, 13.0 and 9.5 meq/100 g, respectively. The Freundlich constant, k value, was 89.4, 26.9 and 9.25 for Namwon soil, Aewol soil and Mureung soil, respectively. The k value of Namwon soil with very high organic matter content and cation exchange capacity was the highest for Aewol soil and Mureung soil. The Freundlich constant, 1/n, show a high correlation with organic matter content, i.e. it is less than unity for organic matter rich soil of Namwon soil and greater than unity for organic matter poor soil of Mureung soil. The leaching of EPN was slower for Namwon soil with high k values, and faster for Mureung soil with low k values. The results of the study was demonstrated the potential of pollution for EPN have little leached into soil environment. EPN was not detected in seawater and sediment in the coastal environment in Cheju Island. EPN used in the farm on tile Cheju island were not residued in the coastal environment.

  • PDF

Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim;Andersen, Lars Vabbersgaard
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.625-639
    • /
    • 2015
  • Monopiles have been most widely used for supporting offshore wind turbines (OWTs) in shallow water areas. However, multi-member lattice-type structures such as jackets and tripods are also considered good alternatives to monopile foundations for relatively deep water areas with depth ranging from 25-50 m owing to their technical and economic feasibility. Moreover, jacket structures have been popular in the oil and gas industry for a long time. However, several unsolved technical issues still persist in the utilization of multi-member lattice-type supporting structures for OWTs; these problems include pile-soil-interaction (PSI) effects, realization of dynamically stable designs to avoid resonances, and quick and safe installation in remote areas. In this study, the effects of PSI on the dynamic properties of bottom-fixed OWTs, including monopile-, tripod- and jacket-supported OWTs, were investigated intensively. The tower and substructure were modeled using conventional beam elements with added mass, and pile foundations were modeled with beam and nonlinear spring elements. The effects of PSI on the dynamic properties of the structure were evaluated using Monte Carlo simulation considering the load amplitude, scouring depth, and the uncertainties in soil properties.