• Title/Summary/Keyword: Coastal oceanographic observation

Search Result 75, Processing Time 0.02 seconds

Estimation of the Lowest and Highest Astronomical Tides along the west and south coast of Korea from 1999 to 2017 (서해안과 남해안에서 1999년부터 2017년까지 최저와 최고 천문조위 계산)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU;KIM, HYOWON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.495-508
    • /
    • 2019
  • Tidal datums are key and basic information used in fields of navigation, coastal structures' design, maritime boundary delimitation and inundation warning. In Korea, the Approximate Lowest Low Water (ALLW) and the Approximate Highest High Water (AHHW) have been used as levels of tidal datums for depth, coastline and vertical clearances in hydrography and coastal engineering fields. However, recently the major maritime countries including USA, Australia and UK have adopted the Lowest Astronomical Tide (LAT) and the Highest Astronomical Tide (HAT) as the tidal datums. In this study, 1-hr interval 19-year sea level records (1999-2017) observed at 9 tidal observation stations along the west and south coasts of Korea were used to calculate LAT and HAT for each station using 1-minute interval 19-year tidal prediction data yielded through three tidal harmonic methods: 19 year vector average of tidal harmonic constants (Vector Average Method, VA), tidal harmonic analysis on 19 years of continuous data (19-year Method, 19Y) and tidal harmonic analysis on one year of data (1-year Method, 1Y). The calculated LAT and HAT values were quantitatively compared with the ALLW and AHHW values, respectively. The main causes of the difference between them were explored. In this study, we used the UTide, which is capable of conducting 19-year record tidal harmonic analysis and 19 year tidal prediction. Application of the three harmonic methods showed that there were relatively small differences (mostly less than ±1 cm) of the values of LAT and HAT calculated from the VA and 19Y methods, revealing that each method can be mutually and effectively used. In contrast, the standard deviations between LATs and HATs calculated from the 1Y and 19Y methods were 3~7 cm. The LAT (HAT) differences between the 1Y and 19Y methods range from -16.4 to 10.7 cm (-8.2 to 14.3 cm), which are relatively large compared to the LAT and HAT differences between the VA and 19Y methods. The LAT (HAT) values are, on average, 33.6 (46.2) cm lower (higher) than those of ALLW (AHHW) along the west and south coast of Korea. It was found that the Sa and N2 tides significantly contribute to these differences. In the shallow water constituents dominated area, the M4 and MS4 tides also remarkably contribute to them. Differences between the LAT and the ALLW are larger than those between the HAT and the AHHW. The asymmetry occurs because the LAT and HAT are calculated from the amplitudes and phase-lags of 67 harmonic constituents whereas the ALLW and AHHW are based only on the amplitudes of the 4 major harmonic constituents.

Estimation of Representative Wave Period and Optimal Probability Density Function Using Wave Observed Data around Korean Western Coast (국내 서해안 파랑 관측자료를 이용한 대표주기 산정 및 최적 확률밀도함수 추정)

  • Uk-Jae Lee;Hong-Yeon Cho;Jin Ho Park;Dong-Hui Ko
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.146-154
    • /
    • 2023
  • In this study, the peak wave period Tp and mean wave period T02 and Tm-1, 0, which are major parameters for classifying ocean characteristics, were calculated using water surface elevation data observed from the second west coast oceanographic and meteorological observation tower. In addition, the ratio of abnormal data, correlation analysis, and optimal probability density function were estimated. In the case of Tp among the calculated representative periods, the proportion of abnormal data was 5.73% and 0.67% at each point, and T02 was 4.35% and 0.01%. Tm-1, 0 was found to be 2.82% and 0.03%. Meanwhile, as a result of analyzing the relationship between T02 and Tp, the relationship was calculated to be 0.53 and 0.63 for each point. The relationship between Tm-1, 0 and Tp was 1.15 and 1.32, respectively, and T02, Tm-1, 0 was 1.18 and 1.22. As a result of estimating the optimal probability density function of the calculated representative period, Tp followed the 'Log-normal' and 'Normal' distributions at each point, and T02 was 'Gamma', 'Normal' distribution and Tm-1, 0 showed that 'Log-normal' and 'Normal' distribution were dominant, respectively. It is decided that these results can be used as basic data for wave analysis conducted on the west coast.

Variations of the Sea Surface Temperature Distribution and the Shelf Fronts in the Cheju Strait and the Korea Strait (한국 남해연안의 해표면 수온분포와 천해전선의 변동 특성)

  • 양성기
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.111-128
    • /
    • 1994
  • The distributions of sea surface temperature across the Cheju Strait and the Korea Strait have been measured by using a thermometer installed on board No.1 Cheju, a ferry that operates regularly between Pusan and Seogwipo. The data from 14 October 1991 to 15 August 1992 were analyzed in this paper. A clear temperature front is wormed at the adjacent sea of Geomundo, and its position is not fixed and moves north and south. The slow northward movement of the front can easily be traced, but the southward movement from March to October is obscure. The temperature contrast in the Cheju Soait and the Korea Strait is very we in this period. Some periodical fluctuations with a period of several tens of days are observed in the region of the temperature front from November to February. This fluctuation seems to be caused by winter heat flux exchange and the strong southeastward wind force. The result shows that continous observation of the sea surface temperature distribution across the Cheju Strait and the Korea Strait yields a good method for monitoring the presence of Tsushima Warm Current and the fluctuations of South Korea Coastal Water. The formation and structure of shelf front in the Cheju Strait and the Korea Strait was analysed based on the detailed oceanographic data observed during the period of 1990-1992. The analysis shows that well-defined fronts were formed through yearly around the Chuja Island, particularly, in summer. In nature, its structure and formation position can be changed easily from year % year and by season. But, in region of the Korea Strait this front is relatively weak.

  • PDF

Estimation of Effective Range of HFR Data and Analysis of M2 Tidal Current Characteristics in the Jeju Strait (제주해협 HFR 자료의 유효 범위 산정과 M2 조류 특성 분석)

  • Oh, Kyung-Hee;Lee, Seok;Park, Joonseong;Song, Kyu-Min;Jung, Dawoon
    • Ocean and Polar Research
    • /
    • v.42 no.2
    • /
    • pp.115-131
    • /
    • 2020
  • The effective range of surface current data observed by high-frequency radar (HFR) operated in the northern coastal area of Jeju Island by Korea Institute of Ocean Science and Technology was estimated and the distribution and variability of the M2 tidal current of the Jeju Strait was analyzed. To evaluate the HFR data, the M2 tidal current corrected from 25 hours current data observed by the Korea Hydrographic and Oceanographic Agency (KHOA) was compared with the M2 tidal current in the Jeju Strait analyzed from the surface currents of HFR. The reliability of HFR data was confirmed by analyzing the characteristics of the tide components of these two data sets, and the effective range of HFR data was estimated through temporal and spatial analysis. The observation periods of HFR used in the analysis were from 2012 to 2014, and it was confirmed that there is a difference in the effective range of HFR data according to the observation time. During the analysis periods, the difference between the M2 current ellipses from the data of KHOA and the HFR was greater in the eastern than in the western part of the Jeju Strait, and represented a high reliability in the western and central parts of the Jeju Strait. The tidal current of the Jeju Strait analyzed using the HFR data revealed a seasonal variability a relatively weak in summer and a strong in winter, about a 17% fluctuations between the summer and winter based on the length of the semi-major axis of tidal ellipse. Appraisals and results of regarding the characteristics and seasonal variability of the M2 tidal current in the Jeju Strait using HFR data have not been previously reported, so the results of this study are considered meaningful.

Performance Evaluation of Monitoring System for Sargassum horneri Using GOCI-II: Focusing on the Results of Removing False Detection in the Yellow Sea and East China Sea (GOCI-II 기반 괭생이모자반 모니터링 시스템 성능 평가: 황해 및 동중국해 해역 오탐지 제거 결과를 중심으로)

  • Han-bit Lee;Ju-Eun Kim;Moon-Seon Kim;Dong-Su Kim;Seung-Hwan Min;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1615-1633
    • /
    • 2023
  • Sargassum horneri is one of the floating algae in the sea, which breeds in large quantities in the Yellow Sea and East China Sea and then flows into the coast of Republic of Korea, causing various problems such as destroying the environment and damaging fish farms. In order to effectively prevent damage and preserve the coastal environment, the development of Sargassum horneri detection algorithms using satellite-based remote sensing technology has been actively developed. However, incorrect detection information causes an increase in the moving distance of ships collecting Sargassum horneri and confusion in the response of related local governments or institutions,so it is very important to minimize false detections when producing Sargassum horneri spatial information. This study applied technology to automatically remove false detection results using the GOCI-II-based Sargassum horneri detection algorithm of the National Ocean Satellite Center (NOSC) of the Korea Hydrographic and Oceanography Agency (KHOA). Based on the results of analyzing the causes of major false detection results, it includes a process of removing linear and sporadic false detections and green algae that occurs in large quantities along the coast of China in spring and summer by considering them as false detections. The technology to automatically remove false detection was applied to the dates when Sargassum horneri occurred from February 24 to June 25, 2022. Visual assessment results were generated using mid-resolution satellite images, qualitative and quantitative evaluations were performed. Linear false detection results were completely removed, and most of the sporadic and green algae false detection results that affected the distribution were removed. Even after the automatic false detection removal process, it was possible to confirm the distribution area of Sargassum horneri compared to the visual assessment results, and the accuracy and precision calculated using the binary classification model averaged 97.73% and 95.4%, respectively. Recall value was very low at 29.03%, which is presumed to be due to the effect of Sargassum horneri movement due to the observation time discrepancy between GOCI-II and mid-resolution satellite images, differences in spatial resolution, location deviation by orthocorrection, and cloud masking. The results of this study's removal of false detections of Sargassum horneri can determine the spatial distribution status in near real-time, but there are limitations in accurately estimating biomass. Therefore, continuous research on upgrading the Sargassum horneri monitoring system must be conducted to use it as data for establishing future Sargassum horneri response plans.

Seasonal Variation of Watermass in the Central Coast of the Southern Sea of Korea (한국 남해 중부 연안 어장에서 수괴의 계절 변화)

  • 김동수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.2
    • /
    • pp.105-116
    • /
    • 2000
  • In order to investigate the seasonal variation of watermass in the central coast of the southern sea of korea, oceanographic observation on the fishing grounds were carried out by the trainingship of Yosu University on May, Aug. and Nov. in 1998 and Feb. in 1999. The resultes obtained are summerized as follows : 1). The watermass in the fishing ground were divided into the coastal water(30.0~31.6$\textperthousand$ ), mixing water(31.7~33.4$\textperthousand$) and the offshore water(33.5~35.0$\textperthousand$) according to the distribution of salinity from T-S diagram plotted all salinity data observed on May, Aug. and Nov. in 1998 and Feb. in 1999. 2) The ranges of temperature and salinity were from 14.1$^{\circ}C$ to 18.8$^{\circ}C$ and from 32.2$\textperthousand$ to 34.9$\textperthousand$ in spring(May), from 14.2$^{\circ}C$ to 27.7$^{\circ}C$ and from 29.0$\textperthousand$ to 34.7$\textperthousand$ in summer(August), from 13.4$^{\circ}C$ to 21.3$^{\circ}C$ and from 31.45$\textperthousand$ to 34.5$\textperthousand$ in autumn(November) and from 8.2$^{\circ}C$ to 14.8$^{\circ}C$ and from 33.9$\textperthousand$ to 34.6$\textperthousand$ in winter(February), respectively. 3) The distribution of watermass in the fishing ground varied largely each seasons, but a general tendency on the distribution was obtained. That is, in spring and autumm the offshore water was distributed most widely and in summer the coastal and mixing water occupied the fishing ground but in winter the offshore water prevailed. 4) Variation of temperature and salinity were appeared between the surface and 30m in the coastal region and between the surface and 50m in the open ocaen region. Therefore, in the summer the thermocline and halocline were made between surface and 30m layer with vertical gradients of 10.5$^{\circ}C$/30m and 4.0$\textperthousand$/30m in the coastal region and in the open ocean region the thermocline and halocline were made between surface and 50m layer with vertical gradients of 13.$0^{\circ}C$/50m and 3.8$\textperthousand$/50m.

  • PDF

Long-Term Observation of Temperature in the Coastal Waters Adjacent to the Wolsung Nuclear Power Plant (월성 원자력 발전소 주변 해역의 장기간 수온관측)

  • Chung, Jong-Yul;Kang, Hyoun-Woo;Shin, Young-Jae;Kim, Kye-Young;Jun, Ho-Kyung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.4
    • /
    • pp.183-192
    • /
    • 1998
  • The long-term observation of temperature in the coastal waters adjacent to the Wolsung Nuclear Power Plant has been carried out from November 10, 1996 to August 22, 1997, for approximately 280 days using a real-time temperature measurement buoy system. The sea-surface temperature was measured at every 10 minute using 10 buoys. The vertical structure of temperature was investigated near the outlet of the plant with two thermistor chains equipped with 10 sensors at 1 m interval The monthly averaged temperature was the lowest with spatial average of $12.8^{\circ}C$ in February and was the highest in August with spatial average of $19.6^{\circ}C$. The extremely low temperature was frequently observed between June and August, which seems to be the consequence of the intrusion of cold water near the southeastern coast of Korea. Distributions of the daily and hourly averaged temperature show that the highest temperature always occurred near the outlet of the plant and the warm-water patch moved along the north-south direction with the semidiurnal period. The semidiurnal fluctuation of temperature was also observed near the surface of the vertical profiles. The spectral analysis of temperature between February and April 1997 shows that the semidiurnal components prevailed near the outlet. It is likely that the semidiurnal components were due to the prevailing semidiurnal tide in this region. In August 1997, the diurnal components were dominant at the surface water of all stations except Station 12, which suggests that the warm water from the outlet of the plant has less effects in summer on the surrounding waters than the strong solar radiation.

  • PDF

The Characteristics of Fishing Ground in the Adjacent Sea of Naro Island (1) - Oceanic Condition of Fishing Ground - (나로도 주변해역의 어장학적 특성 (1) - 어장의 해황 변화 -)

  • 김동수;주찬순;박주삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.8-18
    • /
    • 2003
  • In order to investigate the oceanic condition of fishing ground in the adjacent sea of Naro Island, the oceanographic observation were carried out by the training vessel of Yosu National University on winter, spring, summer, and autumn in 2000. Main features in the observation are as follows; 1) the ranges of temperature, salinity, and chlorophyll-a were from 4.$3\circ_C$ to 10.$1\circ_C$, from 33.1 psu to 34.9 psu, and from 0.1 $ug$/$\Omega$ to 26.2 $ug$/$\Omega$ in winter, from 8.$1\circ_C$ to 13.$7\circ_C$, from 33.1 psu to 34.3 psu, and from 0.1 $ug$/$\Omega$ to 24.4 $ug$/$\Omega$ in spring, from 14.$5\circ_C$ to 24.$2\circ_C$, from 30.5 psu to 34.1 psu, and from 0.1 $ug$/$\Omega$ to 30.0 $ug$/$\Omega$ in summer, and from 14.$8\circ_C$ to 18.$6\circ_C$, from 30.1 psu to 34.0 psu, and from 0.1 $ug$/$\Omega$ to 19.1 $ug$/$\Omega$ in autumn, respectively, 2) the temperature in the coastal region was higher than that in the open ocean while salinity was lower, and the convection was identified between the surface and the bottom during in winter and autumn, and the thermocline were made between surface and 20m layer with vertical gradients of 4.$0\circ_C$/7m in summer, 3) the chlorophyll-a in the this region was varied in each season, being highly distributed in spring, on bottom and coastal region, and 4) an evidence of sea water intrusion toward Sori Island was observed, and of inner water intrusion from Yeoja Bay was observed.

Verification of CDOM Algorithms Based on Ocean Color Remote Sensing Data in the East Sea (동해에서 해색센서를 이용한 CDOM추정 알고리즘 검증)

  • Kim, Yun-Jung;Kim, Hyun-Cheol;Son, Young-Baek;Park, Mi-Ok;Shin, Woo-Chur;Kang, Sung-Won;Rho, Tae-Keun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.421-434
    • /
    • 2012
  • Colored Dissolved Organic Matter (CDOM) is one of the important components of optical properties of seawater to determine ecosystem dynamics in a given marine area. The optical characteristics of CDOM may depend on the various ecosystem and environmental variables in the sea and those variables may vary region to region. Therefore, the retrieval algorithm for determining light absorption coefficient of CDOM ($a_{CDOM}$) using satellite remote sensing reflectance ($R_{rs}$) developed from other region may not be directly applicable to the other region, and it must be validated using an in-situ ground-truth observation. We have tested 6 known CDOM algorithms (three Semi-analytical and three Empirical CDOM algorithms) developed from other regions of the world ocean with laboratory determined in-situ values for the East Sea using field data collected during seven oceanographic cruises in the period of 2009~2011. Our field measurements extended from the coastal waters to the open oceanic type CASE-1 Waters. Our study showed that Quasi-Analytical Algorithm (QAA_v5) derived $a_{CDOM}$(412) appears to match in-situ $a_{CDOM}$(412) values statistically. Semi-analytical algorithms appeared to underestimate and empirical ones overestimated $a_{CDOM}$ in the East Sea. $a_{CDOM}$(412) value was found to be relatively high in the relatively high satellite derived-chlorophyll-a area. $a_{CDOM}$(412) value appears to be influenced by the amount of chlorophyll-a in seawater. The outcome of this work may be referenced to develop $a_{CDOM}$ algorithm for the new Korean Geostationary Ocean Color Imager (GOCI).

Satellite-altimeter-derived East Sea Surface Currents: Estimation, Description and Variability Pattern (인공위성 고도계 자료로 추정한 동해 표층해류와 공간분포 변동성)

  • Choi, Byoung-Ju;Byun, Do-Seong;Lee, Kang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.225-242
    • /
    • 2012
  • This is the first attempt to produce simultaneous surface current field from satellite altimeter data for the entire East Sea and to provide surface current information to users with formal description. It is possible to estimate surface geostrophic current field in near real-time because satellite altimeters and coastal tide gauges supply sea level data for the whole East Sea. Strength and location of the major currents and meso-scale eddies can be identified from the estimated surface geostrophic current field. The mean locations of major surface currents were explicated relative to topographic, ocean-surface and undersea features with schematic representation of surface circulation. In order to demonstrate the practical use of this surface current information, exemplary descriptions of annual, seasonal and monthly mean surface geostrophic current distributions were presented. In order to objectively classify surface circulation patterns in the East Sea, empirical orthogonal function (EOF) analysis was performed on the estimated 16-year (1993-2008) surface current data. The first mode was associated with intensification or weakening of the East Korea Warm Current (EKWC) flowing northward along the east coast of Korea and of the anti-cyclonic circulation southwest of Yamato Basin. The second mode was associated with meandering paths of the EKWC in the southern East Sea with wavelength of 300 km. The first and second modes had inter-annual variations. The East Sea surface circulation was classified as inertial boundary current pattern, Tsushima Warm Current pattern, meandering pattern, and Offshore Branch pattern by the time coefficient of the first two EOF modes.