• Title/Summary/Keyword: Coastal flooding

Search Result 84, Processing Time 0.027 seconds

Research on utilizing global R&D funding database to plan convergence R&D project: Exploring convergence R&D related to the coastal inundation (융합 R&D 기획을 위한 글로벌 연구개발 과제 정보 체계 활용: 해안 침수 관련 융합 R&D 탐색을 중심으로)

  • Heo, Yoseob;Shim, We;Seo, Seongho;Kang, Hyunmu;Kang, Jongseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.475-481
    • /
    • 2019
  • The paradigm of convergence R&D is shifting from the convergence of technologies to the convergence of solutions to solve the complex problems of scientific and social development. On the other hand, it is prevalent that there is a lack of convergence in our research field. Although Korea has invested heavily in fusion research and development, Korea has mainly focused on the application and development of technology, so failed to plan convergence R&D in line with the new paradigm. Therefore, in this study, we searched for convergence R&D area that is being done to solve social problems, and tried to make use of data-driven objective methods. For this purpose, we used the investment information of global R&D projects that had no retrospective properties and derived the convergence R&D area related to coastal flooding.

Development of a Flood Disaster Evacuation Map Using Two-dimensional Flood Analysis and BIM Technology (2차원 침수해석과 BIM 기술을 활용한 홍수재난 대피지도 작성)

  • Jeong, Changsam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.53-63
    • /
    • 2020
  • In this study, the two-dimensional flow analysis model Hydro_AS-2D model was used to simulate the situation of flooding in Seongsangu and Uichang-gu in Changwon in the event of rising sea levels and extreme flooding, and the results were expressed on three-dimensional topography and the optimal evacuation path was derived using BIM technology. Climate change significantly affects two factors in terms of flood damage: rising sea levels and increasing extreme rainfall ideas. The rise in sea level itself can not only have the effect of flooding coastal areas and causing flooding, but it also raises the base flood level of the stream, causing the rise of the flood level throughout the stream. In this study, the rise of sea level by climate change, the rise of sea level by storm tidal wave by typhoon, and the extreme rainfall by typhoon were set as simulated conditions. The three-dimensional spatial information of the entire basin was constructed using the information of topographical space in Changwon and the information of the river crossing in the basic plan for river refurbishment. Using BIM technology, the target area was constructed as a three-dimensional urban information model that had information such as the building's height and location of the shelter on top of the three-dimensional topographical information, and the results of the numerical model were expressed on this model and used for analysis for evacuation planning. In the event of flooding, the escape route is determined by an algorithm that sets the path to the shelter according to changes in the inundation range over time, and the set path is expressed on intuitive three-dimensional spatial information and provided to the user.

Characteristics of Tsunamis and Mitigation Planning (지진해일의 특성 및 방재대책)

  • Cho, Yong-Sik;Ha, Tae-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.295-300
    • /
    • 2010
  • Recently, many tsunamis triggered by impulsive undersea ground motions occurred in subduction zones around the Pacific Ocean area including the East Sea surrounded by Korea, Japan and Russia. The wave height of a tsunami may be in the order of several meters, while the wavelength can be up to 1,000 km in the ocean, where the average water depth is about 4 km. A tsunami could cause a severe coastal flooding and property damage not only at neighboring countries but also at distant countries. A fundamental and economic way to mitigate unusual tsunami attacks is to construct tsunami hazard maps along coastal areas vulnerable to tsunami flooding. These maps should be developed based on the historical tsunami events and projected scenarios. The map could be used to make evacuation plans in the event of a real tsunami assault.

Coastal and Marine Environment Monitoring System using Flooding Routing Protocol (플러딩 라우팅 프로토콜을 이용한 연안.해양 환경모니터링 시스템)

  • Yoo, Jae-Ho;Lee, Seung-Chul;Kim, Jong-Jin;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.180-183
    • /
    • 2011
  • Recently, environmental problems have been deteriorating rapidly. Therefore, there is an urgent need to establish policies and research in the conservation of the global environment. Many researchers are studied in environment systems to prevent and reduce pollution of water, air and soil actively. In this paper, several parameters such as temperature, humidity, illumination, barometric pressure, dew point, water quality data, and air conditions are collected and transmitted thorough wireless sensor network. The field server is located in the coastal and marine area so that any abrupt changes can be detected quickly. In addition, WSN based flooding routing protocol for efficient data transmission is designed to support and monitor information of climate and marin factors.

  • PDF

Temporal-spatial Variations of Water Quality in Gyeonggi Bay, West Coast of Korea, and Their Controlling Factor (한국 서해 경기만 연안역에서 수질환경의 시.공간적 변화 특성과 조절 요인)

  • Lim, Dhong-Il;Rho, Kyoung-Chan;Jang, Pung-Guk;Kang, Sun-Mi;Jung, Hoi-Soo;Jung, Rae-Hong;Lee, Won-Chan
    • Ocean and Polar Research
    • /
    • v.29 no.2
    • /
    • pp.135-153
    • /
    • 2007
  • Temporal (seasonal) and spatial distributions and variations of various physico-chemical factors (salinity, temperature, pH, DO, COD, SPM, POC, silicate, DIP, DIN) in surface and bottom waters were studied in the coastal environment with typical macro-tidal range and monsoonal weather condition, Gyeonggi Bay, west coast of Korea. Spacial distribution patterns of these factors were generally similar to each other, and appeared to be inversely related to the distribution pattern of salinity, suggesting that water quality of the study area was primarily controlled by the physical mixing process of Han-River freshwater with nearby coastal seawater. During flooding season, silicate- and nitrogen-rich Han River water directly flowed into offshore as far as $20\sim30\;km$ from the river mouth, probably causing serious environmental problems such as eutrophication and unusual and/or noxious algal bloom, etc. Except the surface water during summer flooding season, high concentrations of nutrients appeared generally in dry season, whereas low values in spring, possibly because of the occurrence of spring phytoplankton bloom. On the other hand, nutrient flux through the estuary seems to be primarily depending on river discharge, sewage discharge and agricultural activities, especially during the rainy season. Also, nutrients in this coastal waters are considered to be supplied from the sediments of tidal-flats, which developed extensively around the Han-River mouth, especially during fall and winter of dry and low discharge seasons, possibly due to the stirring of tidal flat sediments with highly enriched pore-water nutrients by storm. And also, COD and DIN concentrations in the study area consistently increased during the last 20 years, probably because of agricultural activities and increasing discharge of industrial and domestic wastes.

Analysis on Complex Disaster Information Contents for Building Disaster Map of Coastal Cities (연안도시 재해지도 작성을 위한 복합재해정보 콘텐츠 분석)

  • KIM, Jung-Ok;KIM, Ji-Young;LEE, Won-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.43-60
    • /
    • 2016
  • Coastal cities need disaster planning that accounts for the complex causes of environmental disasters such as high tides or tsunamis generated by typhoons, and of river or lowland flooding caused by heavy rains, etc. The elements of the disaster map were initially defined using a Geographic Information System (GIS) to allow for efficient information management. Complex disaster information elements were thus established in this study to create a disaster map of coastal cities. The range of information required for coastal cities includes the type of disaster, evacuation methods, available sheltering facilities, and learning content. These informational elements are intended to build on spatial information based on data available from the Ministry of Public Safety and Security as well as local governments.

Reproduction of Flood Inundation in Marine City, Busan During the Typhoon Chaba Invasion Using ADCSWAN and FLOW-3D Models (ADCSWAN과 FLOW-3D 모델을 이용한 태풍 차바 내습 시 부산 마린시티의 침수범람 재현)

  • Choi, Heung-Bae;Um, Ho-Sik;Park, Jong-Jib;Kang, Taeuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.881-891
    • /
    • 2020
  • In recent years, large-scale development of coastal areas has caused the loss of many lives and extensive property damage in coastal areas, due to wave overtopping caused by high-wave invasion and strong typhoons. However, coastal inundation studies considering the characteristics of domestic coastal areas are insufficient. This study is a methodology study that aimed to reproduce inundation of surge and wave complex elements by applying the ADCSWAN (ADCIRC+SWAN) and FLOW-3D models. In this study, the boundary data (sea level, wave) of the FLOW-3D model was extracted using the ADCSWAN (ADCIRC+SWAN) model and applied as the input value of the FLOW-3D model and a reproduction was created of the Flooding due to surge and overtopping in Busan Marine City when the typhoon Chaba passed. In addition, the existing overtopping empirical equation and the overtopping calculated by the FLOW-3D model were compared, and for coastal inundation, a qualitative verification was performed using the Inundation Trace Map of Land and Geospatial Informatrix Corporation, and the effectiveness of this study was reviewed.

Inplementation of flooding simulation in coastal area based on 3D satellite images and Web GIS

  • Jo, Myung-Hee;Park, Hyeon-Cheol;Kim, Hyoung-Sub;Choi, Yong-Ki
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.166-169
    • /
    • 2006
  • Our country's coast is vulnerable area to natural disaster which the repetitive damages occur every year including a loss of lives, the damage of facilities and erosion mostly except for the east coast because of a typhoon, tidal waves, sea water overflowing by topographic structure of low-lying gentle slope and shallow sea. However, as for prevention of natural disaster occurring every year, the situation is that it's centered on the restorationcentered measures and the general disaster prevention research to minimize damages at the time of disaster occurrence is insufficient. This study intendedlop t to devehe techniques possible for real time sampling of damage prediction areas on Web in order to support decision making for damage prevention and establishment of disaster prevention policy. For this, the thematic map was produced related to disaster based on high-resolution satellite picture, and the environmental DB similar to real world was constructed through topographic construction of three-dimension integrating the parts of land and the sea. In addition, the system was developed possible for the expression of damageable regions by real time grasp of dangerous regions at the time of disaster occurrence through over flowing simulation of three-dimension, and it's intended to prepare a basis to minimize damages to disaster situations through it.

  • PDF

A Study On the Method for Optimal Selection Tide Observation (조위관측을 위한 최적 기법선정 방법에 관한 연구)

  • Yoon, Dong-Gun;Park, Seon-Dong;Seo, Sang-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.333-335
    • /
    • 2010
  • Global warming gas caused an increase in a direct and indirect problems like the rising sea level, seawater overflowing and a coastal flooding. The loss and damage of the republic of korea are increasing because of the rising sea level. As a result, It is necessary to establish the foundation of the monitoring of the sea level changes for the flooding prevention. A new measurement technique is developed using GPS equipped ship to make up for the spatial-temporal and economical problems by this study. We compared the data using GPS with the value for height of the tide. And we corrected the errors using the more accurate data that we studied. In addition to we studied that the corrected value had statistical significance and similarity compared with the observed value using GPS. The following studies also performed : When the observed value of tide by a tide observatory and by using GPS are applied to sounding ; How the values of the water depth are being, and if the values are similar, whether the observed value of tide using GPS is valid or not.

  • PDF

A Warning and Forecasting System for Storm Surge in Masan Bay (마산만 국지해일 예경보 모의 시스템 구축)

  • Han, Sung-Dae;Lee, Jung-Lyul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.131-138
    • /
    • 2009
  • In this paper, a dynamic warning system to forecast inland flooding associated with typhoons and storms is described. The system is used operationally during the typhoon season to anticipate the potential impact such as inland flooding on the coastal zone of interest. The system has been developed for the use of the public and emergency management officials. Simple typhoon models for quick prediction of wind fields are implemented in a user-friendly way by using a Graphical User Interface (GUI) of MATLAB. The main program for simulating tides, depth-averaged tidal currents, wind-driven surges and currents was also vectorized for the fast performance by MATLAB. By pushing buttons and clicking the typhoon paths, the user is able to obtain real-time water level fluctuation of specific points and the flooding zone. This system would guide local officials to make systematic use of threat information possible. However, the model results are sensitive to typhoon path, and it is yet difficult to provide accurate information to local emergency managers.