Browse > Article
http://dx.doi.org/10.7837/kosomes.2020.26.7.881

Reproduction of Flood Inundation in Marine City, Busan During the Typhoon Chaba Invasion Using ADCSWAN and FLOW-3D Models  

Choi, Heung-Bae (GeoSystem Research Corp.)
Um, Ho-Sik (GeoSystem Research Corp.)
Park, Jong-Jib (GeoSystem Research Corp.)
Kang, Taeuk (Pukyong National University)
Publication Information
Journal of the Korean Society of Marine Environment & Safety / v.26, no.7, 2020 , pp. 881-891 More about this Journal
Abstract
In recent years, large-scale development of coastal areas has caused the loss of many lives and extensive property damage in coastal areas, due to wave overtopping caused by high-wave invasion and strong typhoons. However, coastal inundation studies considering the characteristics of domestic coastal areas are insufficient. This study is a methodology study that aimed to reproduce inundation of surge and wave complex elements by applying the ADCSWAN (ADCIRC+SWAN) and FLOW-3D models. In this study, the boundary data (sea level, wave) of the FLOW-3D model was extracted using the ADCSWAN (ADCIRC+SWAN) model and applied as the input value of the FLOW-3D model and a reproduction was created of the Flooding due to surge and overtopping in Busan Marine City when the typhoon Chaba passed. In addition, the existing overtopping empirical equation and the overtopping calculated by the FLOW-3D model were compared, and for coastal inundation, a qualitative verification was performed using the Inundation Trace Map of Land and Geospatial Informatrix Corporation, and the effectiveness of this study was reviewed.
Keywords
ADCSWAN; FLOW-3D; Typhoon Chaba; Wave overtopping; Inundation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Anderson, T. L. and H. F. Burcharth(2009), Three-dimensional investigation of wave overtopping on rubble mound structures, Coastal Engineering, Vol. 56, No. 2, pp. 180-189.   DOI
2 Booij, N., R. C. Ris, and L. H. Holthuijsen(1999), A third-generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res., Vol. 104, No. C4, pp. 7649-7666.   DOI
3 Deb, M. and C. M. Ferreira(2018), Simulation of cyclone-induced storm surges in the low-lying delta of Bangladesh using coupled hydrodynamic and wave model (SWAN + ADCIRC), J. Flood Risk Manag., Vol. 11, No. S2, pp. 750-765.
4 Dietrich, J. C., M. Zijlema, J. J. Westerink, L. H. Holthuijsen, C. Dawson, R. A. Luettich, R. E. Jensen, J. M. Smith, G. S. Stelling, and G. W. Stone(2011), Modeling hurricane waves and storm surge using integrally-coupled scalable computations, Coast Eng., Vol. 58, No. 1, pp. 45-65.   DOI
5 Dietrich, J. C., S. Bunya, J. J. Westerink, B. A. Ebersole, J. M. Smith, J. H. Atkinson, R. Jensen, D. T. Resio, R. A. Luettich, C. Dawson, V. J. Cardone, A. T. Cox, M. D. Powell, H. J. Westerink, and H. J. Roberts(2010), A high resolution coupled riverine flow, tide, wind, wind wave and storm surge model for southern Louisiana and Mississippi. Part II: Synoptic description and analyses of Hurricanes Katrina and Rita. Mon. Weather Rev., Vol. 138, No. 2, pp. 378-404.   DOI
6 EurOtop(2016), Manual on wave overtopping of sea defences and related structures. An overtopping manual largely based on European research, but for worldwide application. Second Edition. Authors: J. W. van der Meer, N. W. H. Allsop, T. Bruce, J. DeRouck, A. Kortenhaus, T. Pullen, H. Schuttrumpf, P. Troch, and B. Zanuttigh, www.overtopping-manual.com.
7 EurOtop(2007), EurOtop - Wave overtopping of sea defences and related structures: Assessment Manual.
8 Ferreira, C. M., J. L. Irish, and F. Olivera(2014a), Quantifying the potential impact of land cover changes due to sea-level rise on storm surge on lower Texas coast bays, Coast Eng., Vol. 94, pp. 102-111.   DOI
9 Goda, Y.(1970), Estimation of the rate of irregular wave overtopping at seawalls, Technical Report of Port and Airport Research Institute, Vol. 9, No. 4, pp. 3-42.
10 Ferreira, C. M., J. L. Irish, and F. Olivera(2014b), Uncertainty in hurricane surge simulation due to land cover specification, J. Geophys. Res. Ocean., Vol. 119, No. 3, pp. 1812-1827.   DOI
11 Goda, Y.(1985), Random seas and design of maritime structures 1st editionth ed. World Scientific Publishing.
12 Goda, Y., Y. Kishira, and Y. Kamiyama(1975), Laboratory investigation on the overtoppping rate of seawalls by irregular waves, Technical Report of Port and Airport Research Institute, Vol. 14, No. 4, pp. 3-44.
13 Luettich, R. A. and J. J. Westerink(2004), Formulation and Numerical Implementation of the 2D/3D ADCIRC Finite Element Model Version 44.XX.
14 Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, E. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Muller, D. J. Olbers, K. Richter, W. Sell, and H. Walden(1973), Measurement of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogr. Z. Suppl., Vol. 12, No. A8, pp. 1-95.
15 Kang, T. W., S. H. Lee, H. B. Choi, and S. B. Yoon(2019), A Technical Review for Reducing Inundation Damage to High-Rise and Underground-Linked Complex Buildings in Coastal Areas (2): Case Analysis for Application, J. Korean Soc. Hazard Mitig., Vol. 19, No. 5 (Oct.), pp. 45-53.
16 Le Roy, S., R. Pedreros, C. Andre, F. Paris, S. Lecacheux, F. Marche, C. Vinchon(2014), Coastal flooding of urban areas by overtopping: dynamic modelling application to the Johanna storm (2008) in Gavres (France), Natural Hazard and Earth System Sciences Discussions, Vol. 2, No. 8, pp. 4947-4985l.   DOI
17 Ministry of Oceans and Fisheries(2014), Harbour and Fishery Design Criteria.
18 Song, Y., J. Joo, J. Lee, and M. Park(2017), A Study on Estimation of Inundation Area in Coastal Urban Area Applying Wave Overtopping, J. Korean Soc. Hazard Mitig., Vol. 17(2), pp. 501-510.   DOI
19 Xie, D. M., Q. P. Zou, and J. W. Cannon(2016), Application of SWAN + ADCIRC to tide-surge and wave simulation in Gulf of Maine during Patriot's Day storm, Water Sci. Eng., Vol. 9, No. 1, pp. 33-41.   DOI
20 Van der Meer, J. W. and H. Janssen(1995). Wave run-up and overtopping at dikes, Wave forces on inclined and vertical wall structures, ASCE.
21 Yoon, H. S., J. H. Park, and Y. H. Jeon(2017), A Study on Wave Overtopping of the Seawall at Haeundae Marine City During the Passing of Typhoon Chaba, J. Korean Soc. Mar. Environ. Energy, Vol. 20(3), pp. 152-159.   DOI
22 Suh, S. W., H. Y. Lee, H. J. Kim, and J. G. Fleming(2015), An efficient early warning system for typhoon storm surge based on time-varying advisories by coupled ADCIRC and SWAN, Ocean Dyn. 65, pp. 617-646.   DOI