• Title/Summary/Keyword: Coastal erosion

Search Result 301, Processing Time 0.026 seconds

Setting Ecological Goals and Success Criteria Items for Ecological Restoration Projects : Focusing on the Coastal Restoration Projects (생태복원사업의 생태적 목표 및 성공 판단기준 항목 설정 : 연안복원사업을 중심으로)

  • Lee, Sukmo;Lee, Dongjoo;Seo, Jinhyeong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.1
    • /
    • pp.12-17
    • /
    • 2017
  • This study established ecological goals and success criteria by using results of the coastal ecosystem restoration demand survey. The ecological goals are set for species diversity, regulation of seawater flow, improvement of purification, erosion prevention and habitat provision by ecosystem types. The indicators of success criteria are chosen the number of emergence species and community characteristics of target organism and pertinent items of hydrologic, water quality and sediment environment by ecological goals among the investigation items of tidal flat investigation guideline.

Research of Topography Changes by Artificial Structures and Scattering Mechanism in Yoobu-Do Inter-tidal Flat Using Remote Sensing Data (원격탐사자료를 이용한 인공구조물 건설에 의한 군산 유부도 조간대의 지형변화 및 표면특성에 관한 연구)

  • Xu, Zhen;Kim, Duk-Jin;Kim, Seung Hee
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.57-68
    • /
    • 2013
  • Large-scale coastal construction projects, such as land reclamation and dykes, were constructed from the late twentieth century in Yoobu-Do region. Land reclamation combined with the dynamics of tidal currents may have accelerated local sedimentation and erosion resulting in rapid reformation of coastal topography. This study presents the results of the topography changes around Yoobu-Do by large-scale coastal constructions using time-series waterline extraction technique of Landsat TM/ETM+ data acquired from 1998 to 2012. Furthermore, the Freeman-Durden decomposition was applied to fully polarimetric RADARSAT-2 SAR data in order to analyze the scattering mechanisms of the deposited surface. According to the case study, the deposition areas were over 4.5 $km^2$ and distributed in the east, northeast, and west of Yoobu-Do. In the eastern deposition area, it was found that the scattering mechanism was difference from other deposition areas possibly indicating that different types of soil were deposited.

Beach and Sanddune Development along the Coastline of the Chungcheong-Namdo Province (충청남도 해안에 발달한 해빈과 해안사구)

  • Kahng, Tay-Gyoon
    • Journal of the Korean earth science society
    • /
    • v.24 no.6
    • /
    • pp.568-577
    • /
    • 2003
  • The purpose of this paper is to examine the geomorphic processes of beach and sanddune development in the Chungcheong-Namdo Province. The sands consist mainly of quartz and feldspar with lesser amounts of mica and other heavy minerals. With the exception of those from the granite, the sands have a very fine texture. Another characteristic of the sand grains is low degrees of roundness and grading indicating that source areas for the material were in the vicinity of the accumulating field. Over the years, the beaches have receded as a response to the decreasing amount of depositional materials. The driving force for the formation and transformation of coastal dunes in the study area is dominant winds from the center of the Siberian High. To some extent, the erosion of coastal dunes has been a global phenomenon. The degradation process occurred most actively when spring tides attacked beaches, berms, and foredunes. The relief and shape of present-day coastal dunes is determined initially by the Pleistocene strata underneath. From the fact that the strata contained traces of frozen structure, it can be inferred that sediment once experienced the process of soil formation.

Field Monitoring Examination on Wave Energy Dissipation Effects by Submerged Artificial Reefs (현장관측을 통한 잠제의 파랑제어효과검토)

  • Kim, Kyu-Han;Shin, Bum-Shick
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, a field monitoring on Namae beach erosion countermeasure in the east coast of Korea is conducted to verify its efficiency and effectiveness. The Namae Beach project has been carried out for six years with three years for planning and three years for actual construction. The planning phase of numerical model tests and investigations had been reported by Kim et al. (2008, 2011). The field monitoring confirms increase in the beach width after the submerged artificial reefs construction and is due to its wave energy dissipation effects. The field monitoring is performed at the seaward and landward of the countermeasures. The wave height reduction from the seaward side (depth h = 10.5 m) to the landward side (h = 3.7 m) of the reef is measured for wave transmission coefficient (Kt) analysis. The analysis shows 60% of deduction in wave energy due to the submerged artificial reefs.

A Model for Vertical Transport of Fine Sediment and Bed Erodibility in a Wave-Dominated Environment (파랑지배환경에서의 미세퇴적물 수직이동에 관한 모형)

  • Hwang, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.277-288
    • /
    • 1995
  • Prediction of turbidity due to fine-grained bed material load under wave action is critical to any assessment of anthropogenic impart on the coastal or lacustrine environment Waves tend to loosen mud deposits and generate steep suspension concentration gradients, such that the sediment load near the bottom is typically orders of magnitude higher than that near the surface. In a physically realistic but simplified manner, a simple mass conservation principle has been used to simulate the evolution of fine sediment concentration profiles and corresponding erodible bed depths under progressive, nonbreaking wave action over mud deposits. Prior field observations support the simulated trends. which reveal the genesis of a near-bed. high concentration fluidized mud layer coupled with very low surficial sediment concentrations. It is concluded that estimation of the depth of bottom erosion requires an understanding of mud dynamics and competent in situ sediment concentration profiling. Measurement of sediment concentration at the surface alone, without regard to the near-bed zone, can lead to gross underestimation of the erodible bed depth.

  • PDF

Estimating theimpacts of sea level rise using geoprocessing and simulation modeling (지리정보시스템과 시뮬레이션 모델을 이용한 해면상승의 예측과 해안지형에 미치는 영향)

  • Lee, Jae K.;Kwon, Soon Shik
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.4
    • /
    • pp.298-311
    • /
    • 1993
  • Simulation modeling was applied to predict the response of northeast Florida coastal wetlands to futrue sea levl rise due to global warming. Remote sensing and geographic information systems (GLS) were used to develop, manipulate, and synthesize input data, including land cover, digital elevation data, and site characteristics data. The SLAMM3 model evaluated this input data to predict responses of coastal wetlands and lowlands to inundation and erosion by sea level rise, and determined transfers from one habitat to another on a cell-by-cell basis. Significant changes were predicted from different scenarios of sea level rise: 0.5m, 1.0m, and 1.25m. The simulations indicated that 31.9 percent and 40.0 percent of wetlands within the study area would be lost with 1.0m and 1.25m sea level rise respectively, and a 6.5 percent loss with 0.5m rise.

  • PDF

Landscape Ecological Approach and the Strategies of Regional Development on South Chung-Chong Coastal Environment (충남 연안의 경관생태적 지역발전 전략)

  • KANG, Tay-Gyoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.105-116
    • /
    • 2017
  • This article is written in the viewpoint of landscape ecological geography. The coast of South Chung-chong Province will make new characters of region in the development strategies program. This study is to describe geomorphological landscapes of South Chung-chong Province relating with it's environment based on the coast. Although landforms constitute prominent landscape features as tidal flats and rock cliff do, it is nonetheless the features such as beaches, sanddunes, and coastal plains that have various ramifications for human communities. Tidal flats, beaches and coastal sanddunes are special in that their formation is attributable to the combined action of tidal flows, waves and winds. To some extent, the erosion of sand has been a global phenomenon. Human impact are involved. The influence of globalization and expansion of liberal trade appears in regions variously. Individual regions need to secure its competitiveness in the world market. Regions are not value-neutral abstract conception, but must be informal commercialized characters of region. The coast of South Chung-chong Province has experienced rapid and dramatic changes. In industrial times, the middle of west coast Korea turned into a major reclamation at larger scale. Reclaimed land was based on location of industry and mechanized agriculture. The west coast highway and bridges between island and land contributed to the development of west coast transportation. As information society matured, trend and value are changing. Environment and ecology emphasize and rediscover the value of tidal flats and sanddunes. The west coast region now receives attention as eco-tour and sustainable course.

Prediction of Wave Transmission Characteristics of Low Crested Structures Using Artificial Neural Network

  • Kim, Taeyoon;Lee, Woo-Dong;Kwon, Yongju;Kim, Jongyeong;Kang, Byeonggug;Kwon, Soonchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.313-325
    • /
    • 2022
  • Recently around the world, coastal erosion is paying attention as a social issue. Various constructions using low-crested and submerged structures are being performed to deal with the problems. In addition, a prediction study was researched using machine learning techniques to determine the wave attenuation characteristics of low crested structure to develop prediction matrix for wave attenuation coefficient prediction matrix consisting of weights and biases for ease access of engineers. In this study, a deep neural network model was constructed to predict the wave height transmission rate of low crested structures using Tensor flow, an open source platform. The neural network model shows a reliable prediction performance and is expected to be applied to a wide range of practical application in the field of coastal engineering. As a result of predicting the wave height transmission coefficient of the low crested structure depends on various input variable combinations, the combination of 5 condition showed relatively high accuracy with a small number of input variables defined as 0.961. In terms of the time cost of the model, it is considered that the method using the combination 5 conditions can be a good alternative. As a result of predicting the wave transmission rate of the trained deep neural network model, MSE was 1.3×10-3, I was 0.995, SI was 0.078, and I was 0.979, which have very good prediction accuracy. It is judged that the proposed model can be used as a design tool by engineers and scientists to predict the wave transmission coefficient behind the low crested structure.

Smartphone Digital Image Processing Method for Sand Particle Size Analysis (모래 입도분석을 위한 스마트폰 디지털 이미지 처리 방법)

  • Ju-Yeong Hur;Se-Hyeon Cheon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.164-172
    • /
    • 2023
  • The grain size distribution of sand provides crucial information for understanding coastal erosion and sediment deposition. The commonly used sieve analysis for grain size distribution analysis has limitations such as time-consuming processes and the inability to obtain information about individual particle shapes and colors. In this study, we propose a grain size distribution analysis method using smartphone digital images, which is simpler and more efficient than the sieve analysis method. During the image analysis process, we effectively detect particles from relatively low-resolution smartphone digital images by extracting particle boundaries through image gradient calculation. Using samples collected from four beaches in Gyeongsangbuk-do, we compare and validate the proposed boundary extraction image analysis method with the analysis method that does not extract boundaries, against sieve analysis results. The proposed method shows an average error rate of 8.21% at D50, exhibiting a 65% lower error compared to the method without boundary extraction. Therefore, grain size distribution analysis using smartphone digital images is convenient, efficient, and demonstrated accuracy comparable to sieve analysis.

Field Observations of Spatial Structure of Hydrodynamics Including Waves and Currents in the Haeundae Coast (해운대의 파랑 및 흐름 구조의 특성파악을 위한 현장 관측실험)

  • Do, Kideok;Yoo, Jeseon;Lee, Hee Jun;Do, Jong-Dae;Jin, Jae-Youll
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.228-237
    • /
    • 2015
  • Field observations were conducted to collect hydrodynamic and morphological data, which are needed to account for mechanisms of bathymetry changes caused by physical forcings, in Haeundae beach. In order to quantitatively describe characteristics of wave transformations and current patterns in space in winter and summer, in-situ sensors for measuring waves and current profiles were installed at three locations in the cross-shore direction and also three locations in the along-shore direction. As for the results of wave measurements, waves with main direction from the east dominate in winter while waves are incident from the S and the ESE in summer. Analysis of current data reveals that currents over the study domain are considerably influenced by a pattern of tidal motions, thereby, mainly oscillating in the direction of tidal currents, i.e., east-west directions, in both winter and summer. Currents tend to be influenced by local bathymetry in the shallow water region, with the direction changed along the depth contours and the magnitude reduced as they approach the shoreline. The results analysed from the hydrodynamic data through this study can be further combined with the morphological and bathymetry data, leading to the quantification of seasonal sediment transport rates and sand budget changes.