• Title/Summary/Keyword: Coast-down test

Search Result 19, Processing Time 0.031 seconds

The Study on the Influence Analysis of Shimmy&Shake due to Tire Design Parameters (타이어 설계인자별 Shimmy&Shake 영향도 분석에 관한 연구)

  • Bae, Chul-Yong;Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Koo, Byoung-Kook;Rho, Guck-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.415-420
    • /
    • 2007
  • The objective of this study analyzes the influence of shimmy & shake phenomena due to tire design parameters which are RFV(radial force variation), DB(dynamic balance), RRO(radial run out) and air pressure. These parameters are inspection items for Q.C. after tires are manufactured. In order to analyze these parameters on this study, vehicle driving tests were achieved. The test modes are two type which are constant speed and coast-down driving. On this tests the dynamic characteristics of shimmy & shake are measured by the 3-axises accelerometers at the various positions that are knuckle(left & right), rack pinion, seat and steering wheel. In according to analyzed results, the longitudinal vibration of knuckle parts affects the lateral vibration of rack pinion and this vibration affects the lateral vibration of steering wheel that is the shimmy phenomena. Also the over and under DB by comparison with normal DB and the increment of RRO affect the occurrence of shimmy & shake phenomena.

  • PDF

A Study for Detecting Fuel-cut Driving of Vehicle Using GPS (GPS를 이용한 차량 연료차단 관성주행의 감지에 관한 연구)

  • Ko, Kwang-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.11
    • /
    • pp.207-213
    • /
    • 2019
  • The fuel-cut coast-down driving mode is activated when the acceleration pedal is released with transmission gear engaged, and it's a default function for electronic-controlled engine of vehicles. The fuel economy becomes better because fuel injection stops during fuel-cut driving mode. A fuel-cut detection method is suggested in the study and it's based on the speed, acceleration and road gradient data from GPS sensor. It detects fuel-cut driving mode by comparing calculated acceleration and realtime acceleration value. The one is estimated with driving resistance in the condition of fuel-cut driving and the other is from GPS sensor. The detection accuracy is about 80% when the method is verified with road driving data. The result is estimated with 9,600 data set of vehicle speed, acceleration, fuel consumption and road gradient from test driving on the road of 12km during 16 minutes, and the road slope is rather high. It's easy to detect fuel-cut without injector signal obtained by connecting wire. The detection error is from the fact that the variation range of speed, acceleration and road gradient data, used for road resistance force, is larger than the value of fuel consumption data.

Study on the Apply Characteristics to the Gasoline Engine of Exhaust Heat Recovery Device Counterflow (대향류식 배기열 회수장치의 가솔린기관 적용 특성에 관한 연구)

  • Shin, Suk-Jae;Kim, Jong-Il;Jung, Young-Chul;Choi, Doo Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.153-158
    • /
    • 2013
  • The purpose of this study is to investigate the performance characteristics of the counterflow exhaust heat recovery device for the applied gasoline engines. The EHRS device is installed behind the catalyst. This study investigates the engine warm-up characteristic, the exhaust noise characteristic, the back-pressure characteristic. The engine warm-up characteristics is (load 0%, load 10%, load 20%) in (idle, 1000rpm, 1500rpm, 2000rpm, 2500rpm) conditions by measuring the time it warmed up, coolant temperature ($25^{\circ}C{\sim}80^{\circ}C$) until the performance evaluation is performed. The wide open throttle and the coast down the exhaust noise and the back-pressure characteristic experiment repeated twice. The test conditions is 950rpm~6,050rpm proceed experiment repeated 3-5 times. Load 0% idle conditions except the results improved engine warm-up characteristics. The exhaust noise obtain similar results the BASE+EHRS W/O_FRT_MUFF with BASE and back-pressure to obtain similar results BASE+EHRS W/O_FRT_ MUFF with BASE+EHRS.

Performance Assessment of Two Horizontal Shroud Tidal Current Energy Converter using Hydraulic Experiment (수리실험을 통한 수평 2열 쉬라우드 조류에너지 변환장치 성능평가)

  • Lee, Uk-Jae;Choi, Hyuk-Jin;Ko, Dong-Hui
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, the two horizontal shroud tidal current energy converter, which can generate power even under low flow speed conditions, was developed. In order to determine the shape of the shroud system, a three-dimensional numerical simulation test was conducted, and a 1/6 scale down model was made to perform a hydraulic model experiment. The hydraulic model experiment was performed under four flow conditions, and the flow speed, torque, and RPM were measured for each experimental case. As a result of the numerical simulation test, it was found that the flow speeds passing through the nozzle were increased by about 2~3 times in the cylinder, and when the extension ratio was 2:1, the highest flow speed was shown. In addition, it was found that the flow speeds increased 2.8 times when the diameter ratio between the nozzle and the cylinder was 1.5:1. Meanwhile, as a result of the hydraulic model experiment, it was found that when the tip speed ratio was between 1.75 and 2, the power coefficient was 0.32 to 0.34.

Rotordynamic Performance Measurements of a Two-Pad Beam-Type Gas Foil Journal Bearing for High Speed Motors (고속 전동기용 2 패드 빔 타입 가스 포일 저널 베어링의 회전체동역학 성능 측정)

  • Jeong, Kwon Jong;Hwang, Sung Ho;Baek, Doo San;Kim, Tae Young;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.205-212
    • /
    • 2022
  • This paper presents experimental measurements of the structural characteristics of a two-pad beam-type gas foil journal bearing and its rotordynamic performance for a high-speed motor-driven turbocompressor. The test bearing had two top foils and two beam foils, each with an arc length of ~180°. Each beam foil was etched to obtain 40 beams with six geometries of different lengths and widths. The insertion of beam foils into the bearing housing produces equivalent beam heights. The structural tests of the bearing with a non-rotating journal revealed a smaller bearing clearance and larger structural stiffness for the load-on-pad configuration than for the load-between-pads configuration. Rotordynamic performance measurements during driving tests up to 100 krpm demonstrated synchronous vibrations and subsynchronous vibrations with large amplitudes. The test was repeated after inserting the shim between the top foil and beam foil to reduce the bearing radial clearance. The reduced bearing clearance resulted in a reduction in the peak amplitude of the synchronous vibrations and an increase in the speed at which the peak amplitude occurred. In addition, the onset speed and amplitude of the subsynchronous vibrations were dramatically increased and diminished, respectively. The rotor coast-down tests at 100 krpm show that the reduction in the bearing clearance extends the time to rotor stop, thus implying an improvement in hydrodynamic pressure generation and a reduction in bearing frictional torque.

Vibrational Characteristics of High-Speed Motors with Ball Bearings and Gas Foil Bearings Supports (볼 베어링 및 가스 포일 베어링으로 지지되는 소형 고속 전동기의 진동 특성)

  • Seo, Jung Hwa;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.114-122
    • /
    • 2019
  • High-speed rotating machinery requires low cost and reliable bearing elements with low friction, stable rotordynamic characteristics, and a simple design. This study experimentally evaluates the effects of bearing-support elements on the vibrational characteristics of a small-sized, high-speed permanent magnetic motor. A series of coast down tests from 100 krpm characterize the vibrational behaviors, rotor displacement, and housing acceleration of motors supported by ball bearings, ball bearings with a metal mesh damper, and gas foil bearings, respectively. Two eddy-current sensors installed in the horizontal and vertical directions measure the displacement of the rotor at its front nut, and a 3-axis accelerometer attached to the motor housing measures the housing acceleration. The test results reveal that synchronous (1X) vibration components most significantly affect the rotor displacement and housing acceleration, independent of the bearing-support elements. The motor supported by the deep-groove ball bearings results in the largest rotor vibrations increasing with speed; this is due to the absence of a damping mechanism. Additionally, the metal mesh damper effectively reduces the rotor displacement, housing acceleration, and sound-pressure level in the high-speed region (i.e., above 40 krpm), thus implying its substantial damping performance when installed on the outer race of the ball bearing. Lastly, the gas foil bearing supported motor yields the smallest rotor displacement, housing acceleration, and lowest sound-pressure level because of its hydrodynamic airborne operation, which does not require rolling elements that may cause mechanical friction and vibrations.

A Study on Red Tide Control with Loess Suspension (부유황토에 의한 적종방제 연구)

  • Na Gui-Hwan;Choi Woo-Jeong;Chun Young-Yull
    • Journal of Aquaculture
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 1996
  • As one of the red tide control method, montmorillonite was used to eliminate the causative organisms in Korea and Japan. We assayed the loess to replace the montmorillonite because it distribute in large quantity and nearby the red tide occurrence in South Coast of Korea. By using the mixture of loess and coal ashes, we examined the decreasing level of nutrients such as ammonia and phosphate, the elimination of causative organisms as a chlorophyll a content, and the harmful effect on aquaculture orgarnisms in cage culture farms. Half of the ammonium and phosphate was adsorbed by the loess particles, but only $25\%$ of ammonium was adsorbed by the coal ashes particles. In water column test, the particles of loess and coal ashes were settled down by $80\%$ in 20 minutes, the red tide organisms was eliminated by $80\%$ after 2 hours in 1,000 ppm of loess suspension, but the organisms were eliminated only $30\%$ by the same concentration of coal ashes. The harmful test of fishes and invertbrates, we observed any other negative effects of test animals than a tint deceleration in yellowtail.

  • PDF

Rotordynamic Performance Measurements and Predictions of a FCEV Air Compressor Supported on Gas Foil Bearings (가스 포일 베어링으로 지지되는 연료전지 전기자동차용 공기압축기의 회전체동역학적 성능 측정 및 예측)

  • Hwang, Sung Ho;Moon, Chang Gook;Kim, Tae Ho;Lee, Jongsung;Cho, Kyung Seok;Ha, Kyoung-Ku;Lee, Chang Ha
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • The paper presents the rotordynamic performance measurements and model predictions of a fuel cell electric vehicle (FCEV) air compressor supported on gas foil bearings (GFBs). The rotor has an impeller on one end and a thrust runner on the other end. The front (impeller side) and rear (thrust side) gas foil journal bearings (GFJBs) are located between the impeller and thrust runner to support the radial loads, and a pair of gas foil thrust bearings are located on both sides of the thrust runner to support the axial loads. The test GFJBs have a partial arc shim foil installed between the top foil and bump strip layers to enhance hydrodynamic pressure generation. During the rotordynamic performance tests, two sets of orthogonally installed eddy-current displacement sensors measure the rotor radial motions at the rotor impeller and thrust ends. A series of speed-up and coast-down tests to 100k rpm demonstrates the dominant synchronous (1X) rotor responses to imbalance masses without noticeable subsynchronous motions, which indicates a rotordynamically stable rotor-GFB system. Finite element analysis of the rotor determines the rotor free-free (bending) natural modes and frequencies well beyond the maximum rotating frequency. The predicted damped natural frequencies and damping ratios of the rotor-GFB system reveal rotordynamic stability over the speeds of interest. The imbalance response predictions show that the predicted critical speeds and rotor amplitudes strongly agree with the test measurements, thus validating the developed rotordynamic model.

Study on the characteristics of Dormestic Illegal Whaling and Measures for Crackdown (국내 고래류 불법포획의 특징 및 단속방안 연구)

  • Yoon, Hyun-Kyoung;Kim, Jin-Sun;Kim, Sea-In;Kim, Jun-Soo;Choo, Min-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.554-562
    • /
    • 2022
  • Humans technological advancements have resulted in the depletion of whale resources. Accordingly, the International Whaling Commission was established to preserve whale resources and ensure the orderly development of the whaling industry. After a commercial whaling moratorium came into effect, the international trade of whale meat and related products was banned. However, There is a systematic activity through illegal remodeling ships because whales incidentally caught may be distributed in Korea and have a significant economic benefit. Although suspected illegal whaling is actively cracked down, but it is still insufficient to prevent illegal whaling and distribution. To prevent this, stereoscopic crackdowns utilizing air forces and patrol ships are effective, and it is necessary to quickly separate the captured ship and crew to prevent the destruction of evidence. For the transparent distribution of whale meat, it is necessary to advance related technologies such as whale species identification and individual identification of forensic science institutions based on whale DNA database of the National Institute of Fisheries Science. Accordingly, the Korea Coast Guard Research Center is directly conducting research on related national R&D project. To increase the efficiency of identifying whale-related evidence at crime scene, a rapid test kit that responds specifically to whale bloodstrains is developing and evidence transport packs are manufacturing and distributing, while identification technologies are also being advanced.