• Title/Summary/Keyword: Coarse-grain Zone

Search Result 57, Processing Time 0.025 seconds

Effect of Carbon and Nickel on Microstructure and Low Temperature Charpy Impact Properties of HSLA Steels (HSLA 강의 미세조직과 저온 샤르피 충격 특성에 미치는 탄소와 니켈의 영향)

  • Eom, Haewon;Cho, Sung Kyu;Cho, Young Wook;Shin, Gunchul;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.184-196
    • /
    • 2020
  • In this study, effects of carbon and nickel on microstructure and low temperature Charpy impact properties of HSLA (high strength low alloy) steels are investigated. To understand the complex phase transformation behavior of HSLA steels with high strength and toughness before and after welding processes, three kinds of HSLA steels are fabricated by varying the carbon and nickel content. Microstructure analysis, low temperature Charpy impact test, and Vickers hardness test are performed for the base metals and CGHAZ (coarse-grain heat affected zone) specimens. The specimens with the lowest carbon and nickel content have the highest volume fraction of AF, the lowest volume fraction of GB, and the smallest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the highest. The specimens with increased carbon and nickel content have the lowest volume fraction of AF, the highest volume fraction of GB, and the largest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the lowest.

Development of Creep Properties Evaluation Technique for Steel Weldment of Power Plant (발전설비 강 용접부의 크리프 특성 평가 기술 개발)

  • Lee, Dong-Hwan;Jeoung, Young-Hun;Baek, Seung-Se;Ha, Jeong-Soo;Song, Gee-Hook;Lee, Song-In;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.180-185
    • /
    • 2001
  • In the life assessment for plant structural component, the research on deterioration of toughness and material properties occurred in weldments has been considered as very important problems. In general, the microstructures composed in weldments are hugely classified with weld metal(W.M), fusion line(F.L), heat affected zone(HAZ), and base metal(B.M). It has been reported that the creep characteristics on weldments having variable microstructures could be unpredictably changed. Furthermore, it is also known that HAZ adjacent to F.L exhibits the decreased creep strength compared to those in base or weld metals, and promotes the occurrence of Type III and Type IV cracking due to the growth of grains and the coarsening carbides precipitated in ferritic matrix by welding and PWHT processes. However, the lots of works reported up to date on creep damage in power plant components have been mostly conducted on B.M and the creep properties on a localized microstructures in weldments have not as yet been throughly investigated. In this paper, for various microstructures such as coarse grain HAZ(CGHAZ), W.M and B.M in X20CrMoV121 steel weldment, the small punch-creep(SP-Creep) test using miniaturized specimen(t=0.5mm, 0.25mm) is performed to investigate a possibility for creep characteristics evaluation.

  • PDF

Electron beam weldability of Niobium (니오븀의 전자빔 용접성)

  • An, Byung-Hun;Yoon, Jong-Won;Kim, Sook-Hwan
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.15-19
    • /
    • 2008
  • Electron beam (EB) weldability of pure grade Nb sheet was studied. One of Nb sheets was as-annealed and the other was cold rolled. Microstructures, Vickers hardness, and transverse weld tensile test were carried out for the base metal, the heat affected zone (HAZ) and weld metal. In the case of the EB welds made using the annealed Nb sheeet, fine equiaxed grains and coarse grains were dominant at the base metal and the HAZ, respectively, and columnar grains were observed at the weld metal. For the EB welds made using the cold rolled Nb sheet, elongated grains in the rolling direction at the base metal, and the microstructures of the weld metal and the HAZ are similar to those of the EB welds made using the annealed Nb sheet, respectively. For both annealed and cold rolled Nb sheet, the width of the HAZs are unusually wide in spite of using high density heat source, i.e. electron beam, and the grain sizes of both HAZs are similar. When tensile test was carried out using the transverse weld specimens, the failure occurred at the HAZ for both EB welds made using Nb sheets annealed and cold rolled, respectively and the tensile strengths of both specimens were 161MPa. Vickers hardness of EB welds made using annealed Nb was 56-57 Hv at both base metal and weld metal, 52-53 Hv at the HAZ. On the other hand, Vickers hardness of EB welds made using cold rolled Nb was 97-99 Hv at the base metal, but the hardness values of weld metal were similar to those obtained at the weld metal of annealed Nb.

  • PDF

Correlation between Microstructure and Charpy Impact Properties of FCAW HAZ of Thick Steel Plates for Offshore Platforms (해양플랜트용 후판강의 FCAW HAZ 미세조직과 샤르피 충격 특성의 상관관계)

  • Lee, Hun;Lee, Hyunwook;Cho, Sung Kyu;Choi, Dongki;Kim, Hyoung Chan;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.497-504
    • /
    • 2019
  • In this study, the correlation between microstructure and Charpy impact properties of FCAW(Flux cored arc welding) HAZ(Heat affected zone) of thick steel plates for offshore platforms was investigated. The 1/4 thickness(1/4t) location HAZ specimen had a higher volume fraction of bainite and finer grain size of acicular ferrite than those of the 1/2 thickness (1/2t) location HAZ specimen because of the post heat effect during the continuous FCAW process. The Charpy impact energy at $-20^{\circ}C$ of the 1/4t location HAZ specimen was lower than that of the 1/2t location HAZ specimen because of the high volume fraction of coarse bainite. The Charpy impact energy at -40 and $-60^{\circ}C$ of the 1/2t location HAZ specimen were higher than those of the 1/2t location HAZ specimen because the ductile fracture occurred in the fine acicular ferrite and martensite regions. In the ductile fracture mode, the deformed regions were observed in fine acicular ferrite and martensite regions. In the brittle fracture mode, long crack propagation path was observed in bainite regions.

Interpretations of Staurolite Porphyroblast and Pseudomorph Formed During Polymetamorphism Using THERMOCALC (THERMOCALC를 이용한 다변성작용 동안 성장한 십자석 반상변정과 가상의 해석)

  • Kim Hyeong-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.1 s.43
    • /
    • pp.10-24
    • /
    • 2006
  • Staurolite grains in staurolite, kyanite and sillimanite zones occurred in the Littleton Formation, Northcentral Massachusetts have interpreted to form by Barrovian-type metamorphism during Acadian orogeny. However, various occurrence of staurolite in the three zones, (a) porphyroblast, (b) randomly oriented and coarse-grained muscovite pseudomorph after staurolite, (c) recrystallized staurolite at the margin of garnet porphyroblast and within the pseudomorph, indicates that they have resulted from polymetamorphism. Staurolite in these three metamorphic zones can be formed by demise of chlorite or chloritoid that depends on difference of bulk-rock compositions and changes of P-T conditions. Staurolite modal proportion calculated in MnNCKFHASH system using THERMOCALC program reveals that staurolite could have grown with garnet with increasing pressure and temperature, if it coexist with chlorite. After demise of chlorite and appearance of biotite, staurolite mode decrease with increasing pressure and temperature. Therefore, based on the previous P-T paths for the Acadian metamorhism, staurolite porphyroblast grew with garnet during 400-370 Ma. Randomly oriented and coarse-grained muscovite pseudomorphs after staurolite probably have grown due to heating with appearance of kyanite and sillimanite. Consequently, pseudomorphisrn of staurolite occurred by heating derived from locally intense Alleghanian shearing (ca. 320-300 Ma) overprinted the Acadian metamorphism. Recrystallized fine-grained staurolite in sillimanite zone observed between the grain boundaries of muscovite in the pseudomorphs and at the edge of garnet porphyrobasts has formed during decreasing temperature and pressure (ca. 300-280 Ma) after peak temperature (ca. $700^{\circ}C$) of the Allegllanian metamorphism.

Morphologic Response of Gravel Beach to Typhoon Invasion - A Case Study of Gamji Beach Taejongdae in Busan (태풍 내습 시 자갈 해빈의 지형반응 - 부산 태종대 감지 해빈의 사례)

  • Lee, Young Yun;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.19-30
    • /
    • 2020
  • To understand the impact of typhoons on Gamji gravel beach Taejongdae in Busan, we carried out beach profiling using a VRS-GPS system and a Drone photogrammetry for the typhoons 'Kong-rey' invaded in October 2018 and 'Danas' in July 2019. In addition, grain sizes are analyzed to investigate the overall distribution pattern of gravels on the beach, and the beach topography is surveyed periodically to confirm the recovery rate of the beach. Grain-size analysis reveals that mean gravel sizes, in general, become finer from -6.2Φ to -5.4Φ towards the east in the seashore line direction. Variation in mean sizes is obviously observed in the cross-shore direction. Gravels in the swash zone are relatively fine about -4.5Φ in size and equant in shape, whereas the coarse and oblate gravels ranged from -5Φ to -6Φ are found in the berm. Gamji gravel beach particularly has two lines of berms: a lower berm situated facing beach and an upper berm about 10 m landward. After the typhoon Kong-rey passed by, about 1.4 m of severe erosion in upper berm occurred, and the berm eventually disappeared. On the backshore of the upper berm about 50 cm of erosion took place so that the elevation became lower. However, tangible erosion was not observed in the lower berm. When typhoon Danas hit, rated as mild storm, both upper and lower berm were eroded out. However, about 50 cm of deposition occurred only in the backshore. Only three days later, the new lower berm was formed, meaning that sedimentation rate must be high. This result indicates that Gamji gravel beach is recovered very fast from erosion caused by the typhoons when it is under the fair-weather condition even though beach morphology changes dramatically in a short period of time. Gravel beach is estimated to be or evaluated very resilient to typhoon erosion.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.