• Title/Summary/Keyword: Coarse estimation

Search Result 134, Processing Time 0.033 seconds

A Joint Timing Synchronization, Channel Estimation, and SFD Detection for IR-UWB Systems

  • Kwon, Soonkoo;Lee, Seongjoo;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.501-509
    • /
    • 2012
  • This paper proposes a joint timing synchronization, channel estimation, and data detection for the impulse radio ultra-wideband systems. The proposed timing synchronizer consists of coarse and fine timing estimation. The synchronizer discovers synchronization points in two stages and performs adaptive threshold based on the maximum pulse averaging and maximum (MAX-PA) method for more precise synchronization. Then, iterative channel estimation is performed based on the discovered synchronization points, and data are detected using the selective rake (S-RAKE) detector employing maximal ratio combining. The proposed synchronizer produces two signals-the start signal for channel estimation and the start signal for start frame delimiter (SFD) detection that detects the packet synchronization signal. With the proposed synchronization, channel estimation, and SFD detection, an S-RAKE receiver with binary pulse position modulation binary phase-shift keying modulation was constructed. In addition, an IEEE 802.15.4a channel model was used for performance comparison. The comparison results show that the constructed receiver yields high performance close to perfect synchronization.

Object Recognition-based Global Localization for Mobile Robots (이동로봇의 물체인식 기반 전역적 자기위치 추정)

  • Park, Soon-Yyong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF

Selection of design friction angle: a strain based empirical method for coarse grained soils

  • Sancak, Emirhan;Cinicioglu, Ozer
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • In the design of geotechnical structures, engineers choose either peak or critical state friction angles. Unfortunately, this selection is based on engineer's preference for economy or safety and lacks the assessment of the expected level of deformation. To fill this gap in the design process, this study proposes a strain based empirical method. Proposed method is founded on the experimentally supported assumption that higher dilatancy angles result in more brittle soil response. Using numerous triaxial test data on ten different soils, an empirical design chart is developed that allows the estimation of shear strain at failure based on soil's peak dilatancy angle and mean grain diameter. Developed empirical chart is verified by conducting a small scale retaining wall physical model test. Finally, a design methodology is proposed that makes the selection of design friction angle in structured way possible based on the serviceability limits of the proposed structure.

An Overview of Theoretical and Practical Issues in Spatial Downscaling of Coarse Resolution Satellite-derived Products

  • Park, No-Wook;Kim, Yeseul;Kwak, Geun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.589-607
    • /
    • 2019
  • This paper presents a comprehensive overview of recent model developments and practical issues in spatial downscaling of coarse resolution satellite-derived products. First, theoretical aspects of spatial downscaling models that have been applied when auxiliary variables are available at a finer spatial resolution are outlined and discussed. Based on a thorough literature survey, the spatial downscaling models are classified into two categories, including regression-based and component decomposition-based approaches, and their characteristics and limitations are then discussed. Second, open issues that have not been fully taken into account and future research directions, including quantification of uncertainty, trend component estimation across spatial scales, and an extension to a spatiotemporal downscaling framework, are discussed. If methodological developments pertaining to these issues are done in the near future, spatial downscaling is expected to play an important role in providing rich thematic information at the target spatial resolution.

Half-pel Accuracy Motion Estimation Algorithm using Selective Interpolation in the Wavelet Domain (웨이블릿 영역에서의 선택적인 보간에 의한 반화소 단위 움직임 추정)

  • 이경환;정영훈;황희철
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.40-47
    • /
    • 2003
  • In this paper, we propose a new method for reducing the computational overhead of fine-to-coarse multi-resolution motion estimation (MRME) at the finest resolution level by searching for the region to consider motion vectors of the coarsest resolution subband. At this time, if half-pel accuracy motion estimation (HPAME) is used in the baseband where influence a lot of effect to the reconstructed image, we can have the motion vector exactly But, this method causes to higher computational overhead. So we suggest the method to the computational overhead by using selective interpolation. Experimental results show that the proposed algorithm gives better results than the traditional algorithms from image quality.

  • PDF

Non-coherent TOA Estimation Method based on IR-UWB in Multiple SOP Environments (다중 SOP 환경하에서 IR-UWB 기반의 Non-coherent TOA 추정 기법)

  • Park, Woon-Yong;Park, Cheol-Ung;Choi, Sung-Soo;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1086-1095
    • /
    • 2007
  • This paper proposes a novel non-coherent TOA estimation scheme using multiple correlation process on the existence of multiple simultaneously operating piconets (SOPs). Impulse radio-ultra wideband (IR-UWB) based on direct sequence spread spectrum (DSSS) using Gold sequence is employed in order to discriminate each piconet. In order to enhance the characteristic of correlation, this paper presents the method of multiple mask operation (MMO). The time of arrival (TOA) of direct line of sight (DLOS) path is estimated via two step coarse/fine timing detection. To verify the performance of proposed scheme, two distinct channel models approved by IEEE 802.15.4a Task Group (TG) are considered. According to the simulation results, it could conclude that the proposed scheme have performed better performance than the conventional method well even in densed indoor multi-path environment as well as in the existence of multiple SOPs.

Time-Delay Estimation in the Multi-Path Channel based on Maximum Likelihood Criterion

  • Xie, Shengdong;Hu, Aiqun;Huang, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1063-1075
    • /
    • 2012
  • To locate an object accurately in the wireless sensor networks, the distance measure based on time-delay plays an important role. In this paper, we propose a maximum likelihood (ML) time-delay estimation algorithm in multi-path wireless propagation channel. We get the joint probability density function after sampling the frequency domain response of the multi-path channel, which could be obtained by the vector network analyzer. Based on the ML criterion, the time-delay values of different paths are estimated. Considering the ML function is non-linear with respect to the multi-path time-delays, we first obtain the coarse values of different paths using the subspace fitting algorithm, then take them as an initial point, and finally get the ML time-delay estimation values with the pattern searching optimization method. The simulation results show that although the ML estimation variance could not reach the Cramer-Rao lower bounds (CRLB), its performance is superior to that of subspace fitting algorithm, and could be seen as a fine algorithm.

Efficient Time Synchronization Scheme for OFDM based WLAN System (OFDM 기반 무선랜 시스템을 위한 효율적인 시간 동기 기법)

  • Cho, Mi-Suk;Kim, Jae-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.199-200
    • /
    • 2008
  • In this paper, efficient time synchronization scheme for OFDM based WLAN system and its performance simulation results are presented. Assuming AGC and packet detection is done within 7 short training symbols. This scheme consists of coarse and fine estimation, and exhibits robustness over fading and AWGN channel. The presented synchronization scheme achieves the success rate of about 96% over the SNR of 5 dB.

  • PDF

Fusion of Sonar and Laser Sensor for Mobile Robot Environment Recognition

  • Kim, Kyung-Hoon;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.91.3-91
    • /
    • 2001
  • A sensor fusion scheme for mobile robot environment recognition that incorporates range data and contour data is proposed. Ultrasonic sensor provides coarse spatial description but guarantees open space with no obstacle within sonic cone with relatively high belief. Laser structured light system provides detailed contour description of environment but prone to light noise and is easily affected by surface reflectivity. Overall fusion process is composed of two stages: Noise elimination and belief updates. Dempster Shafer´s evidential reasoning is applied at each stage. Open space estimation from sonar range measurements brings elimination of noisy lines from laser sensor. Comparing actual sonar data to the simulated sonar data enables ...

  • PDF

Estimation of Source Contributions for Coarse and Fine Particles Using Two Different Receptor Methods (두가지 수용방법론을 이용한 거대 및 미세입자의 오염원 기여도 추정)

  • 황인조;이태정;김동술
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.255-256
    • /
    • 2001
  • 대기오염물질의 효율적 제어와 관리방안을 마련하기 위해서는 오염원에 대한 정성ㆍ정량분석이 선행되어야 하는데, 이는 오염인의 정성ㆍ정량분석이 일괄적인 오염원 규제가 아닌 개별 오염원 중심의 규제를 가능하게 하고 효율적이고 합리적인 환경정책 수립에 도움을 주기 때문이다. 대기는 자연적 오염원뿐만 아니라 인위적 오염원 등에서 배출된 가스상, 입자상 오염물질이 매우 복잡하게 혼합되어 있어 정확한 오염원의 추정이 어려운 실정이다. (중략)

  • PDF