• 제목/요약/키워드: Coal-fired Power Plant

검색결과 262건 처리시간 0.027초

500MW급 석탄화력발전소 보일러 급수펌프 유량 제어기 개발 (The Development of Feed-Water Flow Controller of Boiler Feed-Water Pump in 500MW Class Coal-Fired Power Plant)

  • 임건표;최인규;박두용;정태원;김건중
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1663-1672
    • /
    • 2010
  • The boiler feed-water pump controllers which can be applied to 500MW class coal fired power plants was developed. The validity of the developed controllers was shown via the applied test result in a power plant. It is expected that the developed controllers are used to retrofit the existing controllers that have surpassed their expected service life and have limited spare parts, and contributes to the stable operation of plants. Based on the collected data and analysis, new control schemes were developed and implemented during the overhaul period in the new control systems. During normal operation, feed water could be supplied to the boiler with the capability of the 1600t/h flow without any problems in automatic mode of controllers. In this study, the feed-water pump controllers were developed successfully. In addition, it is expected that the developed controllers can make the plant operation more stable and can be applied to a lot of power plants.

구조적 제약조건을 갖는 500 MW 석탄화력발전소 탈황설비의 성능개선 (Performance Enhancement of Flue Gas Desulfurization System with Structural Constraints in 500 MW Coal Fired Power Plants)

  • 김종성;유호선
    • 플랜트 저널
    • /
    • 제15권4호
    • /
    • pp.30-35
    • /
    • 2019
  • 미세먼지 감축에 대한 사회적 요구 증가와 강화되는 대기오염물질 배출허용기준을 충족시키기 위해 구조적 제약조건을 갖는 500 MW급 석탄화력발전소 탈황설비의 성능개선 방안을 제시하였다. 탈황설비 흡수탑을 통과하는 배기가스가 선회하도록 내부 설비를 개조하여 난류를 형성시켜 물질전달효율을 증가시키고 반응 면적 및 시간을 증가시킴으로써 황산화물 저감 및 먼지 포집 능력을 향상시킬 수 있었다. 개선결과 황산화물 제거효율은 91.61%에서 98.43%로 향상되었고 먼지 제거성능은 77.4%에서 87.08%로 향상되었다. 배출농도는 황산화물 7.85 ppm, 먼지 4.67 mg/㎥이 배출되어 2023년의 대기오염물질 배출허용기준인 황산화물 25 ppm, 먼지 5 mg/㎥을 만족하는 수준이다. 본 연구의 성능 개선 방식은 유사한 제약조건을 갖는 다른 석탄화력발전소에도 효과적으로 적용될 수 있으리라 기대된다.

KEPCO-China Huaneng Post-combustion CO2 Capture Pilot Test and Cost Evaluation

  • Lee, Ji Hyun;Kwak, NoSang;Niu, Hongwei;Wang, Jinyi;Wang, Shiqing;Shang, Hang;Gao, Shiwang
    • Korean Chemical Engineering Research
    • /
    • 제58권1호
    • /
    • pp.150-162
    • /
    • 2020
  • The proprietary post-combustion CO2 solvent (KoSol) developed by the Korea Electric Power Research Institute (KEPRI) was applied at the Shanghai Shidongkou CO2 Capture Pilot Plant (China Huaneng CERI, capacity: 120,000 ton CO2/yr) of the China Huaneng Group (CHNG) for performance evaluation. The key results of the pilot test and data on the South Korean/Chinese electric power market were used to calculate the predicted cost of CO2 avoided upon deployment of CO2 capture technology in commercial-scale coal-fired power plants. Sensitivity analysis was performed for the key factors. It is estimated that, in the case of South Korea, the calculated cost of CO2 avoided for an 960 MW ultra-supercritical (USC) coal-fired power plant is approximately 35~44 USD/tCO2 (excluding CO2 transportation and storage costs). Conversely, applying the same technology to a 1,000 MW USC coal-fired power plant in Shanghai, China, results in a slightly lower cost (32~42 USD/tCO2). This study confirms the importance of international cooperation that takes into consideration the geographical locations and the performance of CO2 capture technology for the involved countries in the process of advancing the economic efficiency of large-scale CCS technology aimed to reduce greenhouse gases

LCA와 에너지수지비 개념의 확장을 통한 대체에너지기술의 평가방법론 (A Study on the Alternative Technology Evaluation Based on LCA and ″extended″ Energy I/O Technique)

  • 박찬국;박영구;최기련
    • 에너지공학
    • /
    • 제8권2호
    • /
    • pp.317-324
    • /
    • 1999
  • This study suggests the effectiveness of an "extended" power system evaluation methodology based on LCA and energy input-output analysis techniques. This "extended" evaluation methodology is designed to incorporate total energy system costs through fuel cycle and external costs, including CO$_2$abatement cost. As an empirical test, we applied the methodology to orimulsion-fired power generation technology and found that orimulsion could be considered as in attractive base-load power generation fuel in terms of economic and environmental aspects, compared to conventional coal-fired power plant.

  • PDF

Experimental study on capture of carbon dioxide and production of sodium bicarbonate from sodium hydroxide

  • Shim, Jae-Goo;Lee, Dong Woog;Lee, Ji Hyun;Kwak, No-Sang
    • Environmental Engineering Research
    • /
    • 제21권3호
    • /
    • pp.297-303
    • /
    • 2016
  • Global warming due to greenhouse gases is an issue of great concern today. Fossil fuel power plants, especially coal-fired thermal power plants, are a major source of carbon dioxide emission. In this work, carbon capture and utilization using sodium hydroxide was studied experimentally. Application for flue gas of a coal-fired power plant is considered. Carbon dioxide, reacting with an aqueous solution of sodium hydroxide, could be converted to sodium bicarbonate ($NaHCO_3$). A bench-scale unit of a reactor system was designed for this experiment. The capture scale of the reactor system was 2 kg of carbon dioxide per day. The detailed operational condition could be determined. The purity of produced sodium bicarbonate was above 97% and the absorption rate of $CO_2$ was above 95% through the experiment using this reactor system. The results obtained in this experiment contain useful information for the construction and operation of a commercial-scale plant. Through this experiment, the possibility of carbon capture for coal power plants using sodium hydroxide could be confirmed.

대기 점오염원에서 배출되는 개별입자상물질의 물리화학적 특성 (Physico-chemical characterization of individual particles emitted from the air pollution point sources)

  • 박정호;서정민
    • 한국환경과학회지
    • /
    • 제14권8호
    • /
    • pp.761-770
    • /
    • 2005
  • Scanning electron microscopy / energy dispersive X-ray analyzer(SEM/EDX) has played an important role for evaluation the source of atmospheric particle because it is a powerful tool for characterizing individual particles. The SEM/EDX system provides various physical parameters like optical diameter, as well as chemical information for a particle-by-particle basis. The purpose of the study was to classify individual particle emitted from the point sources based on clustering analysis and physico-chemical analysis by SEM/EDX. The total of 490 individual particle were analyzed at 8 point sources including coal-fired power plant, incinerator, H-C oil boiler, and metal manufacturing industry. The main components were Si and AI in the coal-fired power plant, Cl and Na in the domestic waste Incinerator, S in the H-C oil boiler and S and Fe in the metal manufactory industry, respectively.

500 MW 석탄화력발전소 촉매단추가에 따른 탈질설비 효율에 미치는 영향 (Effect of addition of a catalystic layer on Denitrification System efficiency in a 500 MW Coal-fired Power Plant)

  • 이상수;문승재
    • 플랜트 저널
    • /
    • 제17권1호
    • /
    • pp.58-66
    • /
    • 2021
  • 최근 미세먼지 등 대기오염물질 배출에 대한 전국민적 우려로 정부는 대기오염물질 배출규제 강화정책을 내놓고 있다. 국내 석탄화력발전소는 대기환경설비 성능개선에 박차를 가하고 있으며, 이 논문에는 500 MW급 표준석탄화력 탈질설비에 촉매단을 추가하는 성능개선사례를 다루고 있으며, 촉매단 추가 전·후 성능시험시험과 NOx제거효율에 따른 탈질설비 핵심성능 인자의 변화를 살펴보았다. 연구결과 촉매단 추가 전·후 탈질설비 효율은 80%에서 88%로 상승했고, 핵심성능인자인 미반응 암모니아, SO2/SO3 전환율은 설계보증치를 만족하였으나, 차압의 경우 설계보증치를 초과하였다. 동시에, NOx 제거효율에 따른 핵심성능인자 변화는, 미반응 암모니아 농도, 차압 항목은 NOx 제거효율이 증가에 따라 같이 증가하는 양상을 보여 관리 및 개선이 필요하다는 결과를 얻을 수 있었다.

유연운전에 따른 석탄화력보일러 수계통 튜브에서의 이상 유동가속부식(Two-Phase Flow Accelerated Corrosion) 고찰 (A Two-Phase Flow Accelerated Corrosion Study on Water Wall Tube of Coal-Fired Boiler According to Flexible Operation)

  • 김상호;이승민;이재홍
    • Corrosion Science and Technology
    • /
    • 제23권3호
    • /
    • pp.246-254
    • /
    • 2024
  • Recently, coal-fired power plants are experiencing many problems that they have never experienced before due to an increase in flexible operation. In particular, a two-phase flow accelerated corrosion on water wall tubes in a boiler has not been detected overseas or domestically. There is no response plan to deal with such corrosion problem either. However, oxide film damage and tube material corrosion due to a two-phase flow accelerated corrosion are being discovered on water wall boiler tubes of domestic coal-fired power plants recently. If this situation is severe, it can cause enormous damage such as tube rupture. Therefore, in this paper, in order to prepare a response plan for a two-phase flow accelerated corrosion on water wall tubes in the future, differences between a two-phase flow accelerated corrosion and a single-phase flow accelerated corrosion were investigated and an example of discovery of a two-phase flow accelerated corrosion on water wall tubes was presented.

1,000 MW 석탄화력발전소 대기환경오염물질 제거효율 향상을 위한 탈황설비 성능개선 (Enhancement of Desulfurization System Efficiency in 1,000 MW Coal-Fired Power Plants)

  • 이영수;문승재
    • 플랜트 저널
    • /
    • 제17권2호
    • /
    • pp.32-41
    • /
    • 2021
  • 최근 미세먼지 등 대기환경 문제가 국가적 이슈로 급부상 하고있는 추세이며 특히 석탄화력발전소에 대한 강도높은 환경규제치가 적용되고 있는 실정이다. 본 연구는 석탄화력발전소 주요 대기오염 배출물질인 황산화물과 먼지 제거를 위한 탈황설비 성능개선 사례에 대해 소개하고 있으며 현재 운영중인 1,000 MW 발전소의 성능개선을 위한 네가지 Case Study를 수행하고 공사를 하였다. 탈황설비 흡수탑 개조를 통해 액기비를 증대시켰으며 산화공기 유량을 증대시켜 기액 반응을 촉진하였다. 또한 가스가스히터 누설률을 개선하여 최종 탈황설비 효율을 향상시켰다. 기존 설비와 조화를 고려한 성능개선 공사를 통해 2023년부터 적용될 규제치(황산화물 25ppm, 먼지 5mg/Sm3)를 만족할 것으로 예상되며 타 화력발전소에 검토 및 적용하는데 참고될 수 있다고 기대된다.

미분탄화력발전에서의 바이오매스 혼소 시 플랜트 성능특성 평가 (Evaluation of Plant Performance during Biomass Co-firing in Pulverized Coal Power Plant)

  • 문태영;;이은도;이정우;양원
    • 한국연소학회지
    • /
    • 제19권3호
    • /
    • pp.8-17
    • /
    • 2014
  • The aims of this research were to evaluate effects of biomass co-firing to pulverized coal power plants and the variation of co-firing ratios on the plant efficiency related to power consumption of auxiliary system and flue gas characteristics such as production and component by process simulation based on the existing pulverized coal power plant. In this study, four kinds of biomass are selected as renewable fuel candidates for co-firing: wood pellet(WP), palm kernel shell(PKS), empty fruit bunch(EFB) and walnut shell(WS). Process simulation for various biomass fuels and co-firing ratios was performed using a commercial software. Gas side including combustion system and flue gas treatment system was considering with combination of water and steam side which contains turbines, condenser, feed water heaters and pumps. As a result, walnut shell might be the most suitable as co-firing fuel among four biomass since when 10% of walnut shell was co-fired with 90% of coal on thermal basis, flue gas production and power consumption of auxiliary systems were the smallest than those of other biomass co-firing while net plant efficiency was relatively higher than those of other biomass co-firing. However, with increasing walnut shell co-firing ratios, boiler efficiency and net plant efficiency were expected to decrease rather than coal combustion without biomass co-firing.