• Title/Summary/Keyword: Coal-Ash

Search Result 709, Processing Time 0.027 seconds

Hydrothermal Reactivity of Various Classified Fly Ashes by Electrostatic Precipitator (전기집진장치로부터 단별채취한 플라이 애쉬의 수열반응성)

  • ;Estuo Sakai;Masaki Daimon
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.811-816
    • /
    • 2000
  • This paper discussed hydrothermal reactivity of Ca(OH)2 and classified bituminous fly ashes which were collected at an electrostatic precipitator in coal fired power plant at 181$^{\circ}C$. The major products of hydrothermal reaction were tobermorite and hydrogrossularite because bituminous fly ashes contained Al2O3 content greater than 20 wt%. As increasing amount of Al2O3 content greater than 20 wt%. As increasing amount of Al2O3 in glass phases, formation of hydrogrossularite increased. Formation rate of crystalline tobermorite increased with content of finer particles, higher glass content and more Al2O3 in glass phases. There was a positive correlation between residue on 45${\mu}{\textrm}{m}$ sieve and hydrothermal reactivity of fly ash up to 3 hours. The hydrothermal reactivity of fly ash at 181$^{\circ}C$ for 12 hours was more affected by fineness than by glass content of fly ash.

  • PDF

Bloating Mechanism for Artificial Light Weight Aggregate of Surface Modification with Coal ash

  • Lee, Ki Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.159-164
    • /
    • 2015
  • We manufacture artificial lightweight aggregates (ALWAs) using bottom-ash as the primary raw material. We coat the ALWA surfaces with low-melting point materials in order to enable them to bloat, which is essential to reduce the bulk density of the aggregate. Then, we sinter the prepared aggregates at 1000, 1100, and $1200^{\circ}C$ using either the direct or two-step firing schedules. Finally, we evaluate the properties of the fired samples through analyzing their bulk density, water absorption, and microstructure. The surface-modified samples result in a reduction of their bulk density by $0.3{\sim}0.4g/cm^3$ regardless of the firing method used. Based on these results, we conclude that this approach could provide a viable method for the mass-production of ALWAs from industrial waste such as bottom-ash.

Characteristics of Coal Slurry Gasification under Partial Slagging Operating Condition (부분 용융 운전 조건에서 석탄슬러리 가스화 운전 특성)

  • Lee, Jin Wook;Chung, Seok Woo;Lee, Seung Jong;Jung, Woohyun;Byun, Yong Soo;Hwang, Sang Yeon;Jeon, Dong Hwan;Ryu, Sang Oh;Lee, Ji Eun;Jeong, Ki Jin;Kim, Jin Ho;Yun, Yongseung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.657-666
    • /
    • 2014
  • Coal gasification technology is considered as next generation clean coal technology even though it uses coal as fuel which releases huge amount of greenhouse gas because it has many advantages for carbon capture. Coal or pet-coke slurry gasification is very attractive technology at present and in the future because of its low construction cost and flexibility of slurry feeding system in spite of lower efficiency compared to dry feeding technology. In this study, we carried out gasification experiment using bituminous coal slurry sample by integrating coal slurry feeding facility and slurry burner into existing dry feeding compact gasifier. Especially, our experiment was conducted under fairly lower operation temperature than that of existing entrained-bed gasifier, resulting in partial slagging operation mode in which only part of ash was converted to slag and the rest of ash was released as fly ash. Carbon conversion rate was calculated from data analysis of collected slag and ash, and then cold gas efficiency, which is the most important indicator of gasifier performance, was estimated by carbon mass balance method. Fairly high performance considering pilot-scale experiment, 98.5% of carbon conversion and 60.4% of cold gas efficiency, was achieved. In addition, soundness of experimental result was verified from the comparison with chemical equilibrium composition and energy balance calculations.

Effect of Successive Application and Residue of Fly Ash on Yield of Soybean [Glycine max (L) Merr.] (석탄회의 연용 및 잔효가 콩의 수량에 미치는 영향)

  • Hong, Soon-Dal;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.3
    • /
    • pp.248-256
    • /
    • 1997
  • In order to establish a optimum level and proper method of fly ash application for soybean cultivation, the successive three years experiment was conducted in the field applied with four application levels of fly ash, 0, 30, 60, 90 MT/ha during the 1991 to 1993. Influence of successive application and residue of fly ash in soil on soybean growth and yield was discussed. Fly ash application had a favorable effect on soybean growth, however over application such as 90 MT/ha caused to turn the color into the brown of young leaf edge and eventually to have necrosis on the leaf. This symptom was prominent under the application of bituminous coal fly ash. In the 1st year cultivation of soybean, the highest yield was obtained at application level of 30 MT/ha. In the 2nd year, application of anthracite fly ash showed the highest yield at 60 MT/ha for successive application and at 90 MT/ha for the 1st year application followed by the 2nd year residue. Application of bituminous coal fly ash showed the highest yield at 60 MT/ha for the both successive application and residue. In the 3rd year, successive application of the both fly ash was given the highest yield at 30 MT/ha, respectively indicating the decrease of yield with increasing level of application. In case of residue plot, the highest yield by the application of anthracite fly ash was made at 90 MT/ha for the 1st year application followed by 2 years residue and at 60 MT/ha for the 1st and 2nd year application followed by the 3rd year residue. But in the residue plot of bituminous coal fly ash, yield was highest at 30 MT/ha showing the decrease of yield with increasing level of residue. Enhancement in growth and yield of soybean by application of fly ash was due to the fact that fly ash contained some plant nutrients such as phosphorus, silicon, and boron etc. and reformed soil pH that caused to increase availability of nutrients in soil.

  • PDF

Systematic investigation of heavy metals from MSWI fly ash and bottom ash samples

  • Ramakrishna., CH;Thriveni., T;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.35-44
    • /
    • 2017
  • Disposal of municipal solid waste has become a major problem in many countries around the world. As landfill space for the disposal of ash from Municipal Solid Waste Incineration (MSWI) becomes scarce, numerous reports and researches address the various environmental issues about the municipal solid waste incineration waste management and other particulate matters with the range of 10 ~ 2.5. Although in many developing and industrialization countries landfill with the disposal of municipal solid waste, open incineration has become a common practice. Large municipal waste incinerators are major industrial facilities and have the potential to be significant sources of environmental pollution. Despite the significant volume reduction from incineration, waste recycling is important to ensuring the future welfare of mankind. The main goal of the present work is the physical and chemical characterization of the local incineration bottom ash towards its eventual re-utilization. In this paper, we reported the studies on physical and chemical characteristics of municipal solid waste incineration (MSWI) fly ash and bottom ash containing particulate matter whose particulate sizes are lower than $PM_{10}$, $PM_{2.5}$ and heavy metal were investigated.

Physico-Chemical Characterization of Black Carbon Emitted from Coal-fired Power Plant, Charcoal Kiln and Diesel Vehicle (석탄화력 발전소, 숯가마, 디젤차량에서 배출되는 Black Carbon의 물리화학적 특성화 연구)

  • Saixiyaletu, Saixiyaletu;Kim, Jin Young;Shim, Shang-Gyoo;Jin, Hyoun Cher;Kim, Jong Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.2
    • /
    • pp.152-162
    • /
    • 2013
  • The physico-chemical characteristics and nanostructure of the aerosol samples from a coal-fired power plant, a charcoal kiln and diesel vehicles were investigated with focusing on black carbon (BC). Aerosols from the coal-fired power plant were mostly comprised of mineral ash spheres which are heterogeneously mixed. The main components of the aerosols from coal-fired power plant were calcium compounds, iron oxide, alumino-silicate without BC. The typical combustion-generated BC which shows the shape of bunch of grapes with 20~50 nm particles which were detected in aerosol particles from diesel vehicles. The nanostructure of each BC particle shows the shape of concentric circles which is comprised of closely-packed graphene layers. Aerosols from charcoal kiln were likely condensed organic carbon generated from the low-temperature combustion process.

Electrostatic Precipitation Characteristics of Coal Combustion Boiler (석탄연소 보일러용 분진의 전기집진특성)

  • Lee, Tae-Sik;Bun, Cha-Seok;Kim, Gyeong-Seok;Nam, Chang-U;Lee, Gyu-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.475-482
    • /
    • 1999
  • The electrostatic precipitation characteristics of two kinds of fly ashes, one derived from a fluidized bed combustor(FBC), the other from a pulverized coal(PC) fired furnace, have been studied on a pilot plant. Experiments have been carried out to enhance the collection efficiency while changing the operating conditions for two kinds of coal ashes, respectively. It has been shown that collection efficiency is affected by many factors such as shape of the ashes, dust contents, humidity, and temperature, etc. Experimantal results showed that collection efficiency of the FBC ashes was higher than that of the PC fly ash in spite of the small size of the FBC ashes. The experimetal results have been applied to the collection efficiency equations to show that the modified Deutsch equation was well agreed with experiment results if modification parameter k was set to 0.6 for the fluidized bed fly ashes and to 0.43 for the pulverized coal fly ashes.

  • PDF

Beneficiation of Low Grade Anthracites (저품위 무연탄의 처리에 관한 연구)

  • 이재장;전호석;최우진
    • Resources Recycling
    • /
    • v.5 no.2
    • /
    • pp.45-51
    • /
    • 1996
  • Domestic coal contains approximnlely 03 to 7 percentage of sulfur. When the suliur in coal is burned, exhaust gas , nay be thc causc of air pollution problcms as well as acid rain. Thc government dccideil lo strengthen the environmcnlal protection policy a1 the 270 ppm of SO, for the coal-Ered plants and to stari in Ian. 1, 1999. This study was carried out lo rcmove the stlfur and mineral mancrs in the samplw using wet msg~xiic separatol ant1 oil agglomeration apparatus. The rcsults for the wet magnetic separalion showed that the total sulfur removal from Kangnung coal sample was 60.8% with 82.6% combustible recovery. For the results of oil agglomeration testa, combustible recavety, ash nod sulfur rcmovcl horn Maro coal sample were 98.0, 70.9 and 95.7 percent, respectively.

  • PDF

Treatment of Abandoned Coal Mine Discharged Waters Using Lime Wastes

  • Park Joon-Hong;Kim Hee-Joung;Yang Jae-E.;Ok Yong-Sik;Lee Jai-Young;Jun Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.59-61
    • /
    • 2005
  • In Korea, hundreds of abandoned and closed coal and metallic mines are present in the steep mountain valleys due to the depression of the mining industry since the late 1980s. From these mines, enormous amounts of coal waste were dumped on the slopes, which causes sedimentation and acid mine drainage (AMD) to be discharged directly into streams causing detrimental effects on soil and water environments. A limestone slurry by-product (lime cake) is produced from the Solvay process in manufacturing soda ash. It has very fine particles, low hydraulic conductivities ($10^{-8}{\sim}10^{-9}cm/sec$), high pH, high EC due to the presence of CaO, MgO and $CaCl_2$ as major components, and traces of heavy metals. Due to these properties, it has potential to be used as a neutralizer for acid-producing materials. A field plot experiment was used to test the application of lime cake for reclaiming coal wastes. Each plot was 20 x 5 m (L x W) in size on a 56% slope. Treatments included a control (waste only), calcite ($CaCO_3$), and lime cake. The lime requirement (LR) for the coal waste to pH 7.0 was determined and treatments consisted of adding 100%, 50%, and 25% of the LR. The lime cake and calcite were also applied in either a layer between the coal waste and topsoil or mixed into the topsoil and coal waste. Each plot was hydroseeded with grasses and planted with trees. In each plot, surface runoff and subsurface water were collected. The lime cake treatments increased the pH of coal waste from 3.5 to 6, and neutralized the pH of the runoff and leachate of the coal waste from 4.3 to 6.7.

  • PDF

Optical Properties of Soda-lime Color Glass Fabricated by Using Refused Coal Ore (석탄폐석을 이용한 소다라임계 컬러유리의 광학적 특성)

  • Lim, Tae-Young;Jeong, Sang-Su;Hwang, Jong-Hee;Kim, Jin-Ho;Kim, Jung-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.524-534
    • /
    • 2010
  • Glass was fabricated using refused coal ore obtained from the Dogye coal mine in Samcheok. We additionally used soda ash and calcium carbonate to make a glass with the chemical composition of soda-lime glass, and we also used white, brown, and green glass cullet to make various kinds of colored glass. Transparent glass was fabricated by melting batch materials including refused coal ore at $1550^{\circ}C$ for 1 hr in an electrical furnace. The light transmittance and color chromaticity were measured by a UV/VIS/NIR spectrometer. Transparent glass with a light transmittance of over 80% was fabricated using normal refused coal ore and white glass cullet. Various kinds of colored glass with a light transmittance of 30-80% were fabricated using refused coal ore and brown or green glass cullet. The light transmittance of the mixed color glass samples, fabricated using normal refused coal ore and brown glass cullet and green glass cullet, indicated 30-47%, a relatively low value, in the condition of a cullet ratio of 20-50%. The characteristics of the color chromaticity of the glass samples were indicated in a chromaticity diagram by x-coordinates, y-coordinates, Y (lightness). The values of x-coordinates and y-coordinates were moved with a regular directional property according to the kind and amount of glass cullet. Therefore, we concluded that refused coal ore can be used for raw materials of color glass products like art glass and glass tile.