• Title/Summary/Keyword: Coal wastes

Search Result 78, Processing Time 0.028 seconds

A Study on Extension of Application of Industrial By-products: Strength Characteristics of Shotcrete (산업부산물의 사용성 확대를 위한 기초연구: 숏크리트의 강도특성)

  • Park, Cheol-Woo;Kwon, Seung-Joon;Sim, Jong-Sung;Kang, Tae-Sung;Lee, Hyeon-Gi;Sim, Jae-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.75-81
    • /
    • 2009
  • The industrial by-products market has increased at a geometric rate worldwide with the rapid economic growth. Among the wide variety of industrial by-products, fly ash which is generated by the combustion of coal is one of the more troublesome industrial wastes because they entail substantial disposal cost and also cause a shortage of disposal sites. In Korea alone, fly ash generation is expected to increase to 5.8 million tons by 2009, and to 6 million tons by 2010. Given the accelerated industrial development in developing countries, the amount of fly ash generation is predicted to reach enormous levels throughout the world. An increasing number of studies have currently focused on the feasibility of recycling industrial wastes i.e., fly ash in terms of environmental advantages. In this study, the optimized mix proportion of high performance shotcrete using fly ash was determined for the purpose of promoting recycling and reuse of resources.

  • PDF

Valorization of bottom ash with geopolymer synthesis: Optimization of pastes and mortar

  • Froener, Muriel S.;Longhi, Marlon A.;de Souza, Fabiana;Rodriguez, Erich D.;Kirchheim, Ana Paula
    • Advances in concrete construction
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • Due to the physical-chemical characteristics of some bottom ash (BA), there are technical, economic and environmental limitations to find a destination that will add value to it. In Brazil, this residue is eventually used for filling coal extraction pits or remains in sedimentation ponds, creating a susceptible panorama to environmental issues. The geopolymers binders are one of the alternatives to the proper use high amounts of these materials. In this work, geopolymeric binder pastes were produced with BA mixed to activators with different alkali contents (expressed as %Na2O), as well as the incorporation of soluble silicates (Ms content). The production of binary geopolymeric pastes based on the use of two industrial wastes: fluid catalytic cracking (FCC) and aluminum anodizing sludge (AAS), was also assessed. The content in mass of BA/FCC and BA/AAS ranged from 100/0, 90/10; 80/20 and 70/30. Systems with soluble silicates as activator in a molar ratio SiO2/Na2O of 1.0 (Ms = 1.0) and Na2O content of 15%, showed the best results of mechanical strength (42 MPa at day 28th). The improvement is up to 5X when compared to NaOH based systems. For systems with partial replacement of BA of 10% of AAS and 20% of FCC (80/20), the presence of soluble silicates was also effective to increase compressive strength.

Assessment of Water Pollution by Discharge of Abandoned Mines (휴폐광산 지역에서 유출되는 하천수의 오염도 평가)

  • Kim Hee-Joung;Yang Jay-E.;Ok Yong-Sik;Lee Jai-Young;Park Byung-Kil;Kong Sung-Ho;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.25-36
    • /
    • 2005
  • Several metalliferous and coal mines, including Myungjin, Seojin and Okdong located at the upper watershed of Okdong stream, were abandoned or closed since 1988 due to the mining industry promotion policy. Thus these disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water pollution in the downstream areas. Acid mine drainage (AMD) and waste water effluents from the closed coal mines were very strongly acidic showing pH ranges of 2.7 to 4.5 and had a high level of Total Dissolved Solids (TDS) showing the ranges of 1,030 to 1,947 mg/L. Also heavy metal concentrations in these samples such as Fe, Cu, Cd and anion such as sulfate were very high. Concentrations of water soluble heavy metals in the Okdong streams were in the orders of Fe>Al>Mn>Zn>Cu>Pb>Cd, indicating Fe from the AMD and waste water effluents contributed greatly to the quality of water and soil in the lower watershed of Okdong stream. Copper concentrations in the effluents from the tile drainage of mine tailings dams were highest during the raining season. Water Pollution Index (WPI) of the surface water at the upper stream of Okdong river where AMD of the abandoned coal mines was flowed into main stream were in the ranges of 16.3 to 47.1. On the other hand, those at the mid stream where effluents from tailings dams and coal mines flowed into main stream were in the WPI ranges of 10.6 to 19.5. However, those at the lower stream were ranged from 10.6 to 14.9. These results indicated that mining wastes such as AMD and effluents from the closed mines were the major source to water pollution at the Okdong stream areas.

Study of Oil Palm Biomass Resources (Part 3) - Torrefaction of Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 III - 오일팜 바이오매스의 반탄화 연구 -)

  • Cho, Hu-Seung;Sung, Yong Joo;Kim, Chul-Hwan;Lee, Gyeong-Seon;Yim, Su-Jin;Nam, Hyeo-Gyeong;Lee, Ji-Young;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.1
    • /
    • pp.18-28
    • /
    • 2014
  • Renewable Portfolio Standards(RPS) is a regulation that requires a renewable energy generated from eco-friendly energy sources such as biomass, wind, solar, and geothermal. The RPS mechanism generally is an obligatory policy that places on electricity supply companies to produce a designated fraction of their electricity from renewable energies. The domestic companies to supply electricity largely rely on wood pellets in order to implement the RPS in spite of undesirable situation of lack of wood resources in Korea. This means that the electricity supply companies in Korea must explore new biomass as an alternative to wood. Palm kernel shell (PKS) and empty fruit bunch (EFB) as oil palm wastes can be used as raw materials used for making pellets after their thermochemical treatment like torrefaction. Torrefaction is a pretreatment process which serves to improve the properties including heating value and energy densification of these oil palm wastes through a mild pyrolysis at temperature typically ranging between 200 and $300^{\circ}C$ in the absence of oxygen under atmospheric pressure. Torrefaction of oil palms wastes at above $200^{\circ}C$ contributed to the increase of fixed carbon with the decrease of volatile matters, leading to the improvement of their calorific values over 20.9 MJ/kg (=5,000 kcal/kg) up to 25.1 MJ/kg (=6,000 kcal/kg). In particular, EFB sensitively responded to torrefaction because of its physical properties like fiber bundles, compared to PKS and hardwood chips. In conclusion, torrefaction treatment of PKS and EFB can greatly contribute to the implement of RPS of the electricity supply companies in Korea through the increased co-firing biomass with coal.

A Study on the Status of Air and Water Pollutants Emission from Industries in Korea (전국(全國) 산업장(産業場)에서 배출(排出)되는 오염물질량(汚染物質量)에 관(關)한 연구(硏究))

  • Cha, Chul-Hwan;Jang, Chang-Supp;Kim, Hyung-Won;Sung, Young-Ja
    • Journal of Preventive Medicine and Public Health
    • /
    • v.6 no.1
    • /
    • pp.27-41
    • /
    • 1973
  • In order to provide some basic data for the control of air and water pollution in Korea, the authors have estimated the amount of air and water pollutants emitted from industries which are employed over 20 employees. This study have done from July 1, 1972 to the end of March 1973. The results are as followings; 1. Total number of establishments with over 20 employees is 5,197 in Korea and the largest group establishments was the manufacturing of textiles with 1,363 establishments (26.2%). 2. By order of number of employees it was observed that there 2,800 industries with 20-59(53.9%) employees, 1,101 with 50-99 (21.2%), 571 with 100-199 (11.0%), 501 with 200-499 (9.6%) and 225 with over 500 (4.3%) respectively. 3. By order of regional distribution, it was observed that there were 2,257 industries in Seoul (43.2%) and 736 industries in Pusan(14.2%). 4. Industrial coal consumption was 596,154 M/T in 1972, but it' 11 be 315,000 M/T in 1980. Fuel consumption was 4,972,000 K1 in 1972, and estimated volume will be 19,370,000 K1 in 1980. 5. Total amounts of air polutants entitled from industries by fuel combustion were sulfur oxides 79,459 tons, carbon monoxide 33,908 tons, particulate 31,304 tons and hydrocarbon 30,280 tons in 1972 but in 1990 there will be sulfur oxides 1,010,474 tons, nitrogen oxides 204,575 tons, carbon monoxide 68,014 tons, particulate 64,820 tons and hydrocarbon 67,622 tons, respectively. 6. Annual emitted air pollutants through the working processes were sulfur oxides 91,250 tons and nitrogen oxides 32,485 tons in 1972, but sulfur oxides 118,625 tons and nitrogen oxides 42,555 tons will be present in 1980, respectively. 7. Annual emitted air pollutants by national unit area amounted to $0.77ton/km^2/year$ in 1965 and $14.7ton/km^2/year$ in 1980. 8. Total industrial wastes from all industries in Korea were estimated at 810,360 tons/day in 1972; manufacturing of chemicals and plastic products showed the highest amount of wastes at 470,000 tons/day. 9. The amounts of water pollutants due to industrial wastes were the B.O.D., 471.5 tons/day, suspended solid 331.5 tons/day, CN, 2.3 tons/day, and Cr. 3.4 tons/day in 1972, but it might be evident of a B.O.D. of 3,388 tons/day, suspended solid 2,544 tons/day, CN 20.1 tons/day, and 26.5 tone/day in 1990. 10. Total population equivalent of B.O.D. was 943,000 in 1972, and the estimated value in 1950 will be 6,780,000.

  • PDF

A Study on the Characteristics of Combustion and Manufacturing Process on Refuse-derived Fuel by Mixing Different Ratios with Organic and Combustible Wastes (유기성폐기물 고체연료화를 위한 연소 및 제조과정의 특성연구)

  • Ha, Sang-An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.27-38
    • /
    • 2009
  • To investigate the feasibility of refuse derived fuels (RDFs) combined of sewage sludge and combustible wastes such as substitutive fuels instead of a stone coal, several different RDFs made with different mixtures of sewage sludge and combustible wastes were analyzed by various experiments. The combustion characteristics for the RDFs were investigated by analyzing fuel gases, and heating values were also measured by a bomb calorimeter. The fundamental properties such as moisture contents, ratios of combustible materials, amounts of ashes, heavy metals, ratios of each chemical elements and heating values were analyzed in accordance with mixing ratios of wt(%) for researching the characteristics of the RDFs. $RDF_{k-1}$ was made of mixing materials which were dried sewage sludge, food wastes and combustible wastes. $RDF_{k-2}$ was made of mixing materials which were peat-moss, tar and sewage sludge. Combustion experiments were carried out at the optimal conditions which were m=2 under air-fuel condition and $850^{\circ}C$. The retention times in the combustor were set at 5, 10 and 15minutes. 50 g of RDFs was put in the combustor for each experiments. The ranges for heating values of $RDF_{k-1}$ with different mixing ratios were from 6,900 kcal/kg to 8120 kcal/kg. The ranges for heating values of $RDF_{k-2}$ with different mixing ratios were from 4,014 kcal/kg to 8,050 kcal/kg. As a result of this study, the heating values, moisture contents, components of chemical elements and mixing ratios of the materials in RDFs had big effects on the efficiency of the combustion. In $RDF_{k-1}$, the higher amounts of combustible wastes in the mixtures, the higher heating values, concentrations of $C_xH_y$ and amounts of ashes were produced. In $RDF_{k-2}$, the higher tar amounts in the mixtures caused the higher heating values, amounts of ashes, concentrations of CO gas and CxHy.

  • PDF

Effects of Soil Covering Depth and Vegetation Base Materials on the Competition between Pinus densiflora Siebold & Zucc. and Lespedeza cyrtobotrya Miq. at Abandoned Coal Mine Land in Gangwon, Korea (강원도 석탄 폐광지 주변 폐석더미에서 복토와 식생기반재 처리가 소나무(Pinus densiflora Siebold & Zucc.)와 참싸리(Lespedeza cyrtobotrya Miq.)의 경쟁에 미치는 영향)

  • Yi, Koong;Lim, Joo-Hoon;Kim, Jeong-Hwan;Lee, Im-Kyun;Jeong, Yong-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.99-107
    • /
    • 2013
  • This study was conducted to evaluate the effect of soil covering depth and vegetation base materials on the competition between Pinus densiflora Siebold & Zucc. and Lespedeza cyrtobotrya Miq., which were grown in an abandoned coal mine land for three years after seeding, by comparing their growth and stem density. The study site was consisted of sub-plots with four different soil covering depths (0cm, 10cm, 20cm, and 30cm) and four different compounds of vegetation base materials (peat moss (control), soil conditioner+peat moss (S+P), erosion control material+peat moss (E+P), and soil conditioner+erosion control material+peat moss (S+E+P)). Results of this study showed opposite pattern between P. densiflora and L. cyrtobotrya with different soil covering depth and compounds of vegetation base materials in general. P. densiflora showed the highest growth and stem density in plots with 10cm and 0cm depths of soil covering, respectively, while the lowest was shown in plots with 20cm depth of soil covering. In contrast, L. cyrtobotrya showed the highest growth and stem density in plots with 20cm depth of soil covering, while the lowest was shown in plots with 0cm depth of soil covering. In case of vegetation base materials, P. densiflora showed the highest growth and stem density in control plots and plots treated with S+P, respectively, while the lowest was shown in plots with S+E+P treatment. On the other hand, L. cyrtobotrya showed the highest growth and stem density in plots treated with S+E+P, while the lowest was shown in control plots. These results suggested the competition between two plants as a major cause of opposite patterns, which is induced by the suppressed growth and stem density of P. densiflora by fast growing L. cyrtobotrya. Despite the suppression of L. cyrtobotrya on P. densiflora, L. cyrtobotrya can play a positive role in improving soil quality, and thus it would be more desirable for restoring abandoned coal mine land to manage the growth of L. cyrtobotrya periodically, rather than eliminate them.

Influence of red mud additive on lightening of artificial aggregates containing coal bottom ash (석탄바닥재가 포함된 인공골재의 경량화에 미치는 적니 영향)

  • Kang, Min-A;Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.41-46
    • /
    • 2011
  • The artificial aggregates (AAs) composing of 2 wastes, coal bottom ash and dredged soil (7 : 3, weight ratio) were fabricated as a function of red mud contents,0~30 wt% using direct sintering method at $1050{\sim}1250^{\circ}C$ for 10 min, and those physical properties were evaluated. Especially, in order to analyze the red mud addition effect on the bloating phenomenon of AAs manufactured, the specific gravity and water absorption were measured and studied linked with the microstructural observation results. The lightening of AAs was enhanced due to increased bloating with increasing temperature and red mud contents. The AAS sintered at $1050{\sim}1150^{\circ}C$ showed well-developed black-coring structure, but for the specimens containing red mud sintered over $1200^{\circ}C$ generated excessive liquid and gas caused by reduction of $Fe_2O_3$, thus the black-coring part was gradually burst open out of shell of AAs. Particularly, all specimens containing 30 wt% red mud was burst up when sintered over $1100^{\circ}C$. The AAs containing no red mud sintered at $1200^{\circ}C$ had a specific gravity of about 1.2 and those containing 20 wt% had below 1.0 which are characters of lightweight aggregate.

Characterization of Artificial Aggregates Fabricated by Using Various Forming Methods (다양한 성형법으로 제조된 인공 골재의 특성)

  • Kang, Seung-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.94-101
    • /
    • 2009
  • The physical properties of artificial aggregates made from clay and inorganic wastes with poor plasticity depends largely on forming method. The artificial aggregates composing of coal fly ash, stone sludge and clay were fabricated using 4 different forming methods and those physical properties were comparatively analyzed. The surface of aggregates made through the extrusion forming process was dense and smooth but was rough for the aggregates obtained by crushing a tile-shaped green body. The aggregates made by pelletizing process had a weak green strength and bumpy surface. The shell generated at surface during a high temperature sintering process induced the most aggregates to be bloated due to a dense shell. But the aggregates made through pelletizing process with dense surface layer showed no significant change in bulk density with sintering temperatures. The water absorption of aggregates decreased with sintering temperature, and that of pelletized specimen was standing $1.8{\sim}2.2$ times higher than that of made by other forming methods. It is concluded that the aggregates having various properties could be fabricated from one batch by using different forming methods.

Hydrogen Production by Gasification Technologies (가스화기술을 이용한 수소제조 기술)

  • 윤용승
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Gasification is the essential technology that can meet the interim hydrogen demand of large quantity before entering the hydrogen economy. Although the hydrogen production that is based upon the pure renewable energy like wind and solar power will eventually prevail, the interim mass production of hydrogen for the next ten to twenty years will come from the technologies that can demonstrate the economic feasibility in production cost with a high potential in minimizing CO$_2$ generation and in improving plant efficiency. Particularly, feedstock such as natural gas, coal, petroleum residual oil, wastes, and biomass appears to be utilized in Korea as hydrogen source, at least during the short and medium period of time, owing to the advantage in production cost. Because one of the main reasons behind the recent hydrogen issue is the reduction requirement of CO$_2$ that would be controlled according to the climate change protocol, hydrogen production technologies must be developed to yield the minimal CO$_2$ generation.