• Title/Summary/Keyword: Coal ashes

Search Result 88, Processing Time 0.02 seconds

Evaluation of Static and Dynamic Characteristics of Coal Ashes (석탄회의 정적 및 동적 특성 평가)

  • Yoon, Yeowon;Chae, Kwangsuk;Song, Kyuhwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.5-12
    • /
    • 2009
  • This study presents static and dynamic strength of coal ashes collected from disposal site of power plant. Main compositions of coal ashes were bottom ashes. In order to evaluate static and dynamic characteristics of coal ash, NGI direct-simple shear tests, cyclic simple shear tests and direct shear tests were conducted. The strengths of coal ashes from those tests were compared to those of sands. Bottom ashes among coal ashes used for this study were classified as sand from the grain size distribution and show higher strength properties than the sands. For utilization of coal ashes in civil engineering project, mixing coal ashes with sandy soil using batch plant is inconvenient and the cost is higher than the spreading sand layer and coal layer alternately. In order to simulate both mixing type and layered type construction, sands and coal ashes were mixed with volume ratio 50:50 and prepared sand and coal ash layers alternately with the same volume ratio. From the tests mixed coal ashes-specimen shows slightly higher static and cyclic strength than the layered specimen at the same density. The higher strength seems due to the angular grain of bottom ashes. The cyclic stress ratio at liquefaction decreases rapidly as the number of cycle increases at mixed specimen than that of layered specimen.

  • PDF

A Study on Application of Bottom Ash with Grouting Improvement and Waterproof Grouting (지반보강 및 차수 그라우팅재로서의 Bottom Ash 활용에 관한 연구)

  • Kwon, Hyuk-Doo;Lee, Bum-Jun;Doh, Young-Gon;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1075-1082
    • /
    • 2008
  • Recently, coal ashes which are increasing annually are buried in ash ponds as industrial wastes. However, buried coal ashes can pollute ground water and ground due to leachate from coal ashes, which are serious environmental problem. Even though a lot of researches on recycling of coal ashes have been conducted, only 15% of coal ashes are recycled up to now. And those recycled coal ashes are not bottom ashes but fly ashes. So in this study, it was proved that Bottom Ash can be used as an alternative material to O.P.C(Ordinary Portland Cement) according to laboratory test results and test field construction. Also bottom ash is more economical and environmentally friendly than O.P.C.

  • PDF

The treatment of coal fly ash for recycling as ceramic raw materials : II. The effects of sampling condition and pH treatment in elutriation (요업 원료로 재활용하기 위한 석탄회의 처리 : II. 채취조건 및 수비선별시 pH의 영향)

  • 허화범;정철원;박종현;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.627-639
    • /
    • 1996
  • Charateristics of Ansan and Boryong coal fly ashes collected at different seasons were investigated for the recycling them as ceramic raw materials. The effect of pH treatment on the classification of Ansan coal fly ashes by elutriation was discussed. Charateristics of ansan and boryong coal fly ashes were not significantly changed with power plants and seasons. major crystalline phases were mullite and quartz. These results suggested that coal fly ashes cab be used as raw materials instead of clay minerals. However, particle size distribution was very broad from a few $\mu\textrm{m}$ to over $100\;\mu\textrm{m}$. Especially, ansan coal fly ashes have various morphologies. Therefore, coal fly ashes should be classified before using as raw materials. Because of higher dispersion by pH treatment, spherical cenospheres were mainly collected in the 4th step and particle size distribusion was also decreased by elutriation for the ansan coal fly ashes. The specific surface area of the sample collected in the 4th step was $1.24\;m^{2}/g$ which was smaller than that of not treated Ansan coal fly ashes.

  • PDF

Electrostatic Precipitation Characteristics of Coal Combustion Boiler (석탄연소 보일러용 분진의 전기집진특성)

  • Lee, Tae-Sik;Bun, Cha-Seok;Kim, Gyeong-Seok;Nam, Chang-U;Lee, Gyu-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.475-482
    • /
    • 1999
  • The electrostatic precipitation characteristics of two kinds of fly ashes, one derived from a fluidized bed combustor(FBC), the other from a pulverized coal(PC) fired furnace, have been studied on a pilot plant. Experiments have been carried out to enhance the collection efficiency while changing the operating conditions for two kinds of coal ashes, respectively. It has been shown that collection efficiency is affected by many factors such as shape of the ashes, dust contents, humidity, and temperature, etc. Experimantal results showed that collection efficiency of the FBC ashes was higher than that of the PC fly ash in spite of the small size of the FBC ashes. The experimetal results have been applied to the collection efficiency equations to show that the modified Deutsch equation was well agreed with experiment results if modification parameter k was set to 0.6 for the fluidized bed fly ashes and to 0.43 for the pulverized coal fly ashes.

  • PDF

Evaluation of Leaching Potential of Heavy Metals from Bottom Ashes Generated in Coal-fired Power Plants in Korea (국내 석탄 화력발전소 배출 바닥재의 중금속 용출 가능성 평가)

  • Park, Dongwon;Choi, Hanna;Woo, Nam C.;Kim, Heejoung;Chung, David
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.32-40
    • /
    • 2013
  • This study was objected to evaluate the potential impact on the groundwater environment of the coal bottom ash used as fill materials on the land surface. From four coal-fired power plants, bottom-ashes were collected and analyzed through sequential extraction and column leaching tests following the meteoric water mobility procedure. The column tests shown leaching heavy metals including Pb, As, B, Cu, Zn, Mn, Ni, Ba, Sr, Sb, V, Cr, Mo, and Hg. The relatively high concentrations of B, Sr, Ba, and V in leachate were attributed to both the higher concentrations in the bottom ash and the relatively higher portion of leachable state, sorbed state, of metals. Bottom-ash samples from the D-plant only show high leaching potential of sulfate ($SO_4$), probably originated from the coal-combustion process, called the Fluidized Bed Combustion. Consequently, to manage recycling bottom ashes as fill materials, an evaluation system should be implemented to test the leaching potentials of metals from the ashes considering the absolute amount of metals and their state of existence in ashes, and the coal-combustion process.

Suitability of Coal Fly Ash and Incineration Ashes as Raw Materials for Zeolite Synthesis

  • Murayama, NorihiHo;Yamakawa, Yousuke;Ogawa, Kazuo;Takami, Yuko;Yamamoto, Hideki;Shibata, Junji
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.616-620
    • /
    • 2001
  • The objectives of this study are to investigate the suitability of various coal fly ashes and incineration ashes for zeolite synthesis. Zeolite P and hydroxysodalite are produced from coal fly ash and paper sludge incineration ash. When soluble and acid-soluble materials in incineration fly ash are removed by the water washing or acid washing before hydrothermal synthesis, hydroxysodalite can be produced. The factors to make solid-liquid separation difficult are the calcium component and the unburned carbon in ash.

  • PDF

The brief review on Coal origin and distribution of rare earth elements in various Coal Ash Samples

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2018
  • Rare earth elements together with Y and Sc (REEs) are essential in the development of technology for clean and efficient use of energy. In recent years coal deposits have much attention and attracted as a promising alternative raw sources for rare earth elements, not only because the REEs concentrations in many coals or coal ashes are equal to or higher than those found in conventional types of REEs ores but also because of the world wide demand for REEs in recent years has been greater than supply. In the coal ashes, REEs are mainly associated with carbonates, silicates and aluminosilicates in ashes at 800 and $1100^{\circ}C$. These elements are known to be powerful environmental tracers in natural biogeochemical compartments. In this study, to reviewed the REEs originating and distribution patterns in coal ash samples from the bedrock and/or soil weathering that were entrapped by lichens and mosses was investigated. The REEs patterns of different organisms species allowed minor influence of the species to be highlighted compared to the regional lithology.

Feasibility of Coal Combustion Ash on Acidity Regulation for Agricultural Use (석탄연소재의 산도조절을 통한 농업적 활용 가능성)

  • Oh, Sejin;Kang, Min Woo;Kim, Sung-Chul;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.10-16
    • /
    • 2019
  • BACKGROUND: Coal ashes generated from thermal power plants have been known as beneficial materials for agricultural use because of their nutrient elements. However, there is limitation to recycle them due to their alkalinity. The objective of this study was to evaluate the effectiveness or safety of the coal ashes for their heavy metals on agricultural recycling when adjusted to pH of 5 with sulfuric acid. METHODS AND RESULTS: Concentration of hydrogen which is needed to adjust pH of coal ash was estimated by using a buffering curve and then the amount of sulfuric acid was changed by the estimation before incubation. Each of fly ash (FA) and bottom ash (BA) was collected from both thermal plants of Yeongdong (YD) and Yeongheung (YH). The pH values of coal ashes increased to 4.76 (from 4.34) after incubation with sulfuric acid for 56 days, closer to the targeted pH. Coal ashes also increased the contents of available phosphorus by 2-fold (165 mg/kg) and 11-fold (1,137 mg/kg) for YDBA and YDFA, respectively, compared to the control. CONCLUSION: The utilization of coal ash with its acidity regulation would be very beneficial to agriculture sector and further suggest promising environmental safety against heavy metals.

Specification of Chemical Properties of Feed Coal and Bottom Ash Collected at a Coal-fired Power Plant

  • Ma, Chang-Jin;Kim, Jong-Ho;Kim, Ki-Hyun;Tohno, Susumu;Kasahara, Mikio
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.80-88
    • /
    • 2010
  • In order to offer a better understanding of air pollution of China as well as East Asia we attempted to characterize the chemical properties of the raw coal materials mined in China and their combusted bottom ashes generated from coal fired power plant. To this end, we measured the chemical characteristics of individual bottom ashes and feed coal fragments collected at a coal fired power generator which was operated with the raw coal dug at a coal mine in China. The chemical properties of these two sample types were determined by a synchrotron radiation X-ray fluorescence (SR-XRF) microprobe method. Through an application of such technique, it was possible to draw the 2D elemental maps in and/or on raw coal fragments and fired bottom ashes. The pulverized fine pieces of feed coal mainly consisted of mineral components such as Fe, Ca, Ti, Ca, and Si, while Fe was detected as overwhelming majority. The elemental mass of combusted bottom ash shows strong enrichment of many elements that exist naturally in coal. There were significant variations in chemical properties of ash-to-ash and fragment-to-fragment. Although we were not able to clearly distinguish As and Pb peaks because of the folding in their X-ray energies, these two elements can be used as tracers of coal fire origin.

Propoerties of Beneficated Fly Ashes (미연탄서를 제거한 플라이애쉬의 특성)

  • ;Sakai Etusuo;Daimon Masaki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.613-618
    • /
    • 1999
  • This paper discuss the chemical, physical and mineral properties of classified fly ashes by electrostatic precipitator and calcinated fly ashes at 50$0^{\circ}C$. The electrostatic precipitator in coal fired power plant has a number of hopper in the direction of flue gases. The properties of fly ashes collected at each hopper in the electrostatic precipitator are different. Superfine, fine and ordinary fly ashes can be collected respectively at each hopper. The carbon content in fly ash is influenced on the viscosity of paste. By calcination, the carbon content in fly ash is decreased and the fluidity of paste is improved.

  • PDF