• 제목/요약/키워드: Coal Syngas

검색결과 108건 처리시간 0.022초

KOGAS DME 공정의 실증 시험을 통한 최적화 기술개발 (Optimization of KOGAS DME Process From Demonstration Long-Term Test)

  • 정종태;조원준;백영순;이창하
    • 한국수소및신에너지학회논문집
    • /
    • 제23권5호
    • /
    • pp.559-571
    • /
    • 2012
  • Dimethyl ether (DME) is a new clean fuel as an environmentally-benign energy resource. DME can be manufactured from various energy sources including natural gas, coal, and biomass. In addition to its environmentally friendly properties, DME has similar characteristics to those of LPG. The aim of this article is to represent the development of new DME process with KOGAS's own technologies. KOGAS has investigated and developed new innovative DME synthesis process from synthesis gas in gaseous phase fixed bed reactor. DME has been traditionally produced by the dehydration of methanol which is produced from syngas, a product of natural gas reforming. This traditional process is thus called the two-step method of preparing DME. However, DME can also be manufactured directly from syngas (single-step). The single-step method needs only one reactor for the synthesis of DME, instead of two for the two-step process. It can also alleviate the thermodynamic limitations associated with the synthesis of methanol, by converting the produced methanol into DME, thereby potentially enhancing the overall conversion of syngas into DME. KOGAS had launched the 10 ton/day DME demonstration plant project in 2004 at Incheon KOGAS LNG terminal. In the mid of 2008, KOGAS had finished the construction of this plant and has successively finished the demonstration plant operation. And since 2008, we have established the basic design of commercial plant which can produce 3,000 ton/day DME.

합성가스로부터 경질탄화수소 및 중산유분을 생산하기 위한 Fischer-Tropsch의 국내연구동향 (A Review of Domestic Research Trends of Fischer-Tropsch for the Production of Light Hydrocarbons and Middle Distillates From Syngas)

  • 김진호;김효식;김지현;류재홍;강석환;박명준
    • Korean Chemical Engineering Research
    • /
    • 제57권4호
    • /
    • pp.565-574
    • /
    • 2019
  • Fischer-Tropsch 합성공정은 합성가스로부터 탄화수소를 합성하는 대표적인 방법이며, 주로 철(Fe)계와 코발트(Co)계 촉매로 알려져 있다. 현재 생성물에 따라 일부 기술(CTL, GTL 등)은 상용 규모로 운전되고 있으나, 경질탄화수소와 중간유분을 직접 생산하는 연구는 아직 상용화되지는 않았다. 그러므로, 본 연구에서는 국내에서 현재까지 경질탄화수소와 중간유분을 직접 생산하기 위한 연구들을 정리하였으며, 촉매의 제조법, 조촉매 첨가, 제올라이트의 조합과 같은 영향이 생성물의 선택도에 미치는 영향을 고찰하였다.

비 용융 방식 분류층 석탄가스화기 시스템의 고압 연속운전 특성 (High Pressure Operation Characteristics of Non Slagging Type Entrained Bed Coal Gasifier)

  • 정석우;정우현;황상연;이승종;윤용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.71.1-71.1
    • /
    • 2011
  • 석석탄가스화 기술은 고온, 고압 조건에서 미분탄과 산소의 가스화 반응에 의해 CO와 $H_2$가 주성분인 합성가스를 제조하는 기술로서 차세대 화력발전 뿐만아니라 다양한 화학원료 제조를 위한 분야에서 각광을 받고 있다. 또한, 가스화 기술은 향후 CCS기술, CTL(Coal To Liquid, 석탄액화)기술, SNG(Synthetic Natural Gas, 합성천연가스)생산, 수소생산, 각종 화학원료 생산 등과 연계가 가능한 미래 석탄이용 분야의 핵심 기술이라 할 수 있다. 따라서, 고등기술연구원에서는 이러한 석탄가스화를 통해 양질의 합성가스를 제조하기 위한 기술 개발의 일환으로 pilot급 고온, 고압 건식 분류층 가스화기, 기류수송 방식의 미분탄공급장치, 수냉자켓 구조의 합성가스 냉각장치, 합성가스 중 분진제거를 위한 금속필터 장착 집진장치 등을 연계하여 20기압의 고압 조건에서 장시간 연속운전을 진행하였다. 본 연구에서는 미분탄 공급을 위하여 상부공급 버너를 적용하였고 석탄가스화기는 $1,300{\sim}1,350^{\circ}C$ 정도의 온도에서 운전을 진행하였으며 미분탄을 75 kg/h의 조건에서 연속적으로 공급하였다. 그리고, 이러한 조건에서 5.5일 정도의 연속운전을 진행하는 동안 CO 44~48%, $H_2$ 20~21%, $CO_2$ 4~5% 조성의 석탄 합성가스를 $200Nm^3/h$ 안정적으로 제조할 수 있었다.

  • PDF

석탄가스화 기술에 대한 특허분석 (A Patent Analysis on Coal Gasification Technology)

  • 문성근;정영훈;김윤정;정연수
    • 청정기술
    • /
    • 제18권2호
    • /
    • pp.144-154
    • /
    • 2012
  • 석탄가스화 기술에 대하여 1970년대 중반부터 2010년까지의 한국, 미국, 일본, 유럽 및 국제특허를 조사하고, 각국의 출원 현황, 점유율, 주요출원인, 특허활동지수, 시장력 등을 분석하였다. 기술발전의 초기에는 일본과 미국이 기술개발을 주도하였으나 2000년대 들어 특허활동 주체가 다변화되고 있으며 전체적인 기술 발전주기는 발전기에 해당하는 것으로 분석되었다. 세부 기술 가운데 가스화기 분야에서의 특허가 가장 많은 것으로 나타났다. 인용도지수, 영향력지수, 기술력지수, 특허 패밀리크기 등의 지표를 이용하여 주요 특허권자의 기술경쟁력을 분석하였다. 특허패밀리크기 및 인용도지수를 이용한 정량화를 통해 핵심특허를 도출하고 기술흐름도를 작성하여 기술 동향을 살펴보았다.

석탄가스화 공정 모델링에 관한 연구 (A Study of Coal Gasification Process Modeling)

  • 이중원;김미영;지준화;김시문;박세익
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.425-434
    • /
    • 2010
  • Integrated gasification combined cycle (IGCC) is an efficient and environment-friendly power generation system which is capable of burning low-ranked coals and other renewable resources such as biofuels, petcokes and residues. In this study some process modeling on a conceptual entrained flow gasifier was conducted using the ASPEN Plus process simulator. This model is composed of three major steps; initial coal pyrolysis, combustion of volatile components, and gasification of char particles. One of the purposes of this study is to develop an effective and versatile simulation model applicable to numerous configurations of coal gasification systems. Our model does not depend on the hypothesis of chemical equilibrium as it can trace the exact reaction kinetics and incorporate the residence time calculation of solid particles in the reactors. Comparisons with previously reported models and experimental results also showed that the predictions by our model were pretty reasonable in estimating the products and the conditions of gasification processes. Verification of the accuracy of our model was mainly based upon how closely it predicts the syngas composition in the gasifier outlet. Lastly the effects of change oxygen are studied by sensitivity analysis using the developed model.

CO 합성을 위한 저급석탄-CO2 촉매 가스화 반응 (Low Grade Coal-CO2 Catalytic Gasification Reaction for CO gas Synthesis)

  • 이호용;이종대
    • 한국응용과학기술학회지
    • /
    • 제33권3호
    • /
    • pp.466-473
    • /
    • 2016
  • 본 연구에서는 합성가스 CO를 생산하기 위해 저급 석탄-$CO_2$ 촉매 가스화 실험을 수행하였다. 제조된 CO가스 특성은 키데코 탄과 신화 탄에 KOH, $K_2CO_3$, $Na_2CO_3$ 촉매들의 화학적 활성화 방법을 이용하여 조사되었다. CO 제조공정은 석탄과 화학약품 활성화 비율, 가스 유량, $CO_2$ 전환 반응온도와 같은 실험 변수 분석을 통해 최적화되었다. 제조된 합성 가스는 가스 크로마토그래피(GC)에 의해 분석 되었다. 실험조건 $T=950^{\circ}C$, $CO_2$ 유량 100 cc/min에서, 20 wt% $Na_2CO_3$가 혼합된 키데코 탄에 대해 98.6%, 20 wt% KOH가 혼합된 신화탄에 대한 98.9% $CO_2$ 전환율을 얻었다. 또한, 저급 석탄-촉매 가스화 반응은 동일한 공급 비와 반응 조건에서 97.8%, 98.8%의 CO 선택도를 얻었다.

모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 1 : 화염안정성 (Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 1 : Flame Stability)

  • 이민철;주성필;윤지수;윤영빈
    • 한국항공우주학회지
    • /
    • 제41권8호
    • /
    • pp.632-638
    • /
    • 2013
  • 본 논문에서는 네덜란드 부게넘 및 국내 태안 IGCC플랜트의 석탄으로부터 생성된 합성가스의 화염안정성 및 연소불안정성에 대해 기술하였다. GE7EA 모사 가스터빈 연소기를 대상으로 상압 고온 연소시험을 수행하여 입열량 및 질소희석에 따른 연소특성을 관찰하였다. 시험결과를 통해 화염안정화 선도는 화염의 구조에 따라 Regime I부터 VI까지 6개의 영역으로 구분하였고, 2개의 영역(Regime I, II)에서 화염이 안정적으로 연소되는 것을 확인하였다. 태안 및 부게넘 합성가스 모두 안정하게 연소되고, 화염이 외부 재순환 유동과 결합되는 Regime II에 해당하는 것을 확인하였다. 또한 $H_2$/CO비만을 고려하면 수소의 함량이 높은 부게넘 가스가 안정적 연소구간이 넓지만, 질소희석을 고려할 때 부게넘 가스 내의 더 많은 질소가 화염안정성에 부정적 영향을 미치기 때문에 태안 합성가스가 부게넘 합성가스보다 더 안정적으로 연소하였다.

DME 직접 합성공정 기술개발 (Development of Direct DME Synthesis Process)

  • 모용기;조원준;백영순
    • 한국가스학회지
    • /
    • 제14권3호
    • /
    • pp.41-45
    • /
    • 2010
  • DME(Dimethyl Ether)는 물리적 성질이 LPG와 유사하여 청정하면서 LPG와 잘 섞이고, 세탄가가 디젤연료와 유사하여 디젤을 대체할 수 있는 환경 친화적인 차세대 대체에너지이다. DME는 천연가스, CBM, biomass 등 다양한 원료로부터 제조할 수 있으며 탄소-탄소 직접결합이 없어 연소시 배기가스중에 검댕이나 황산화물이 없다. 한국가스공사에서 개발한 DME 공정은 크게 4개의 section으로 구분할 수 있다. 먼저 합성가스를 제조하는 syngas section 에서는 다양한 합성가스 비율을 제조할 수 있다. 이것은 tri-reforming을 완성하는 과정에서 합성가스 비율을 약 4.0~1.0의 범위로 조절할 수 있다. 두 번째로 $CO_2$ removal section에서 제거되는 $CO_2$는 약 92~99%로서 DME 합성반응기로 유입되는 $CO_2$의 최대 농도는 8%를 넘지 않아야 한다. 세 번째로 DME synthesis section에서 DME 합성 반응기의 반응온도는 높을수록 활성이 좋지만 촉매의 장기 활성을 위해서는 적정한 온도를 유지하는 것이 바람직하다. 마지막으로 DME purification section에서는 99.5%이상의 고순도의 DME를 정제할 수 있다.

ABK탄을 이용한 pilot급 분류층 석탄가스화기 시스템의 고압 운전특성 (High Pressure Operation Characteristics of Pilot Scale Entrained-Bed Gasification System Using ABK Coal)

  • 정석우;유상오;정우현;이승종;윤용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.105.2-105.2
    • /
    • 2010
  • 석탄의 직접 연소 대신 고온/고압의 조건에서 불완전연소 및 가스화 반응을 통하여 일산화탄소(CO)와 수소($H_2$)가 주성분인 합성가스를 제조하여 이용하는 석탄 가스화 기술은 현실적인 에너지원의 확보를 위한 방법인 동시에 이산화탄소를 저감할 수 있는 기술이라 할 수 있다. 따라서, 본 연구에서는 non-slagging 방식의 pilot급 분류층 석탄가스화기를 대상으로 고압 미분탄공급장치, 합성가스 냉각장치, 고온 집진장치 등을 연계하여 상용급 석탄가스기와 유사한 $1,300^{\circ}C$, 20 kg/$cm^2$의 운전조건에서 미분탄의 안정적인 공급을 통한 양질의 합성가스 제조 및 제조된 합성가스의 분기 공급특성 시험을 진행하였다. 그리고, 고압 미분탄공급장치는 공급호퍼에 저장된 미분탄을 고온/고압 조건으로 운전되는 석탄가스화기에 공급하기 위한 설비로서, 이러한 고압 미분탄공급장치를 이용한 기류수송 방식의 미분탄 공급 기술은 가스화기 설계 및 운전제어 기술과 더불어 석탄가스화기 시스템의 안정적 연속운전을 위한 가장 핵심적인 기술 중 하나라고 할 수 있다. 따라서, 본 연구에서는 아역청탄인 인도네시아 ABK탄을 대상으로 향후 dense phase 고압 기류수송을 목적으로 하는 고압 미분탄공급장치의 성능특성을 시험을 진행하였는데, 시험 결과 73 kg/h 조건에서 20 kg/$cm^2$의 가스화기에 대한 안정적인 미분탄 공급특성을 확인할 수 있었으며, 이러한 미분탄 공급 조건에서 CO 40~45%, $H_2$ 16~20%, $CO_2$ 5~8% 조성의 양질의 합성가스를 평균적으로 $230{\sim}50Nm^3/h$ 안정적으로 제조할 수 있었다.

  • PDF

고정층 반응기에서의 저등급 석탄 혼합촉매가스화 반응특성 (Low-rank Coal Char Gasification Research with Mixed Catalysts at Fixed Reactor)

  • 안승호;박지윤;진경태;이영우
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.99-106
    • /
    • 2017
  • 본 연구에서는 인도네시아 저등급 석탄인 Kideco탄을 이용하여 질소 분위기 하에 등온상태에서 촤(char)를 생성한 후 반응가스(스팀,이산화탄소)를 주입하여 합성가스를 생성하는 가스화를 진행하였다. 온도가 반응속도에 미치는 영향을 알아보기 위해 $850^{\circ}C$ 이하의 운전온도(700, 750, 800, $850^{\circ}C$)에서 반응을 진행하였다. 촉매가 미치는 영향을 알아보기 위해 알카리계 촉매인 탄산칼륨과 금속촉매인 니켈을 이용하였으며 두가지 촉매의 혼합비율(1:9, 3:7, 5:5, 7:3, 9:1)을 다르게 하여 연구를 수행하였다. 탄산칼륨은 물리적 혼합을 통해 니켈은 이온교환법을 통해 준비하였다. 기-고체 반응 특성을 알아보기 위해 열중량분석기와 가스크로마토그래피를 통해 얻은 실험결과를 shrinking core model (SCM), volumetric reaction model (VRM), random pore model (RPM) and modified volumetric reaction model (MVRM)에 적용하여 비교하였다.