• Title/Summary/Keyword: Coal Combustion Test Facility

Search Result 11, Processing Time 0.025 seconds

Study on Coal Combustion Characteristics with 1MWth Test Facility (1MWth 실험연소로를 이용한 석탄의 연소특성 연구)

  • Jang, Gil Hong;Chang, In Gab;Jeong, Seok Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1464-1472
    • /
    • 1999
  • Design and operation of $1MW_{th}$ pulverized coal combustion testing facility are described. Also the influence of air staging on NOx emission and burnout of coal flames was investigated in this facility. The test facility consisted of coal feeding system, firing system and flue gas treatment system. A top-fired externally air staging burner was adopted in order to avoid influence of gravity on the coal particles and for easy maintenance. Distribution of temperature and chemical species concentration of coal flames could be measured in vertical pass of furnace. Main fuel was pulverized (83.4% less than $80{\mu}m$) Australian high bituminous coal. From variety of test conditions, overall excess air ratio was selected at 1.2(20% excess air). Tho study showed that increasing the staged air resulted in lower NOx omission, and it was suggested to be more than 40% of the total combustion air for the substantial NOx reduction. Sufficient burnout was not achievable when NOx emission was less than 500ppm. Also, the amount of core air did not influence tho NOx reduction.

The First Operation of Coal Combustion Test Facility in HANJUNG (HANJUNG 석탄 실험연소로의 초기운전)

  • Jang, G.H.;Chang, I.G.;Jeong, S.Y.;Chon, M.H.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.79-84
    • /
    • 1998
  • In this paper we show design and operation of 1MWth pulverized coal combustion test facility. The test facility is consists of coal feeding system, furnace and flue gas treatment system. The furnace is equipped with a top-fired burner in order to avoid influence of gravity on the coal particles. There are two part of vertical(VP) and horizontal pass(HP) at furnace. We can measure temperature and species of coal flames in vertical pass. Also, there is horizontally arranged section where investigation regarding corrosion and deposit formation will be carried out. The burner of combustor was externally air staging burner(EASB) type made by IFRF. The pulverized high bituminous(Blair athol) coal from Australia was used as fuel, and the particle size less than 80 ${\mu}m$ was 83.4%. Overall excess air ratio was 1.2.

  • PDF

Combustion Characteristics of Imported Bituminous & Subbituminous Coal in a Pilot Scale Test Facility (발전용 역청탄 및 아역청탄의 파일롯 연소특성 평가)

  • Kim, Hyunhee;Park, Hoyoung;Lim, Hyunsoo;Baek, Sehyun;Kim, Taehyung;Kim, Youngju;Gong, Jiseon;Lee, Jeongeun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.207-214
    • /
    • 2014
  • With the depletion of high grade coal, it is indispensable to be used co-combustion of low rank coal with bituminous coal in pulverized coal-fired power plants. This study describes the detailed measurements of combustion characteristics of bituminous and subbituminous coal in a 0.7MWth pilot-scale test facility. This experimental works include the measurement of gas temperature, gas concentrations along with the reactor axial and radial distance at the condition of excess air ratio of 1.2. The solid sampling was carried out and analyzed with the combustion of bituminous coal. The main reaction zone of coal flame in a reactor was formed about 1 m from the swirl burner, and at downstream, the fully developed temperature and species distribution was observed. The sampled particles of bituminous coal in a reactor revealed the complete carbon burn-out was achieved just after an main combustion zone.

The evaluation of combustion characteristics for 2 kinds of Indonesian sub-bituminous coals by using combustion test facility at KEPRI (시험연소로를 이용한 인도네시아산 아역청탄 2종의 연소특성 평가)

  • Lee, Hyun-Dong;Kim, Sung-Chul;Kim, Jong-Jin;Kim, Tae-Heung;Yang, Seung-Han;Shin, Young-Jin;Min, Chang-Gi
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.27-46
    • /
    • 1999
  • Combustion test on two kinds of Indonesian sub-bituminous coals of single and blended with bituminous coal imported for power generation was carried out by using the test furnace at KEPRI. The main items of combustion test were temperature profiles of the inside furnace, the yield of unburned carbon, environmental pollution emissions, slagging/fouling tendency, and the comparison of heat loss of furnace. The test results showed that low sulfur and ash content characterized by the Indonesian coals were advantageous to environmental aspect, but high tendency of heat loss and slagging/fouling were disadvantageous to boiler operation. From the results, the necessity of proper coal blending to compensate these weak points was recommended.

  • PDF

The fuel flexibility of CFBC boiler (순환유동층보일러의 연료유연성 실증연구)

  • Bae, Dal-Hee;Shun, Do-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.145-148
    • /
    • 2008
  • Fuel flexibility of CFBC boiler was examined. Combustion characteristics of low grade coal, coal sludge, coal RDF mixture and RDF were compared. The operation result of a commercial 130TPH CFBC co-generation boiler burning a low grade Chinese coal were analysed. Burning characteristics of coal/RDF mixture and coal and industrial sludge mixture were studied in a 0.1MWth scale CFBC test rig. Also RDF fuel were tested in a 8TPH CFBC test facility. Though fuel characteristics were different, the combustion modes were all very stable. The temperature were maintained in between $800-950^{\circ}C$.

  • PDF

Effect of Air Staging on NOx Reduction in Pulverized Coal Combustion (미분탄 연소에서 NOx 저감을 위한 공기다단의 효과)

  • Jang, Gil-Hong;Chang, In-Gab;Sun, Chil-Young;Chon, Mu-Hwan;Yang, Gwan-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.149-154
    • /
    • 1999
  • The influences of air staging on NOx emission and burnout of coal flames were investigated using 1MWth combustion test facility. The experiments showed that variation of overall excess air ratio led to a relatively higher NOx emission level for ${\lambda}=1.2.$ When air staging was applied to the combustion air, it was confirmed that a fuel rich primary combustion zone was established and unburned char was burened completely by mixing with the staged air supplied radially around the flame. The NOx emissions were redued by increasing the staged air flow rate, and staging air was suggested to be more than 40% of the total combustion air for the substantial NOx reduction.

  • PDF

Operating condition and air pollutant emission when do RPF co-combustion in coal fluid bed boiler (석탄유동층 보일러에 RPF 혼소시 운전조건 및 대기오염물질 배출 특성 변화)

  • Yoon, Kyoon-Duk;Park, In-Chul;park, Jong-Kyeong;Cho, Yeon-Haeng;Choi, Yeon-Seok;Shun, Do-Won;Park, Do-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.527-530
    • /
    • 2006
  • Because price of fossil fuel rises, necessity about alternative energy was risen. Studied co-combustion of RPF to coal fluid bed boiler by necessity of these althernative energy. Purpose of this study to coal fluid bed bioler RPF when did co-combustion, change operating condition and characteristic of air pollutant examine according to change of fuel characteristic, operating condition examined about combustion chamber temperature, oxygen content etc. and air pollutant examined about material that is included to allowable exhaust standard and dioxin. Co-combustion condition was 5%. It was no peculiar under test result operating condition. Concentration of Co and HCl rose according as do RPF co-combustion and the other pollutants had hardly changed. Dioxin is low concentration level more than $0.1ng-TEQ/Sm^3$. There was no pollutant that exceed akllowable exhaust standard for boiler but $SO_x,\;NO_x$ were exceeded about allowable exhaust standard for incinerating facility.

  • PDF

A Study on Combustion Characteristics of Pulverized Fuel Made from Food Waste (음식물쓰레기로 부터 제조한 분체연료 연소특성)

  • Son, Hyun-Suk;Park, Yung-Sung;Kim, Sang-Guk
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.37-43
    • /
    • 2008
  • Three properties of food waste are water 80%, ash 3%, volatile matter 17%. When food waste goes through treatment process such as removal of foreign substances, removal of water as well as sodium, dryness, and pulverization, it transforms into 4,000 Kcal/kg purverized fuel if moisture content is below 13%. Fuel ratio (fixed carbon/volatile matter) of purverized fuel is low compared with bituminuous coal. Ignition temperature measured by thermogravimetry analyzer is about $460^{\circ}C$. Combustion test of purverized fuel have been performed using energy recovery facility which include storage tank of dewatered cake, dryer, hammer mill, combuster including burner, boiler, flue gas treatment equipment. When 160-180 kg/hr of fuel is steadily supplied to burner for 3 hours, combustor temperature reaches about $1000^{\circ}C$ and CO is 77-103 ppm at 1.55 excess air ratio and SOx and Cl are under 2 ppm and 1ppm, respectively. This experiment demonstrate that purverized fuel made from food waste could be an alternative clean energy at the age of high oil price.

  • PDF

A Study on Combustion Characteristics of Purverized Fuel Made from Food Waste (음식물쓰레기로부터 제조한 분체연료 연소특성)

  • Son, Hyun-Suk;Park, Yung-Sung;Yun, Jong-Deuk;Lee, Ho-Nam;Lee, Seung-Hoon;Kim, Sang-Guk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.149-152
    • /
    • 2008
  • Three properties of food waste are water 80%, ash 3%, volatile matter 17%. When food waste goes through treatment process such as removal of foreign substances, removal of water as well as sodium, dryness, and pulverization, it transforms into 4,000Kcal/kg purverized fuel if moisture content is below 13%. Fuel ratio(fixed carbon/volatile matter) of purverized fuel is low compared with bituminuous coal. Ignition temperature measured by thermogravimetry analyzer is about $460^{\circ}C$. Combustion test of purverized fuel have been performed using energy recovery facility which include storage tank of dewatered cake, dryer, hammer mill, combuster including burner, boiler, flue gas treatment equipment. When 160-180 kg/hr of fuel is steadily supplied to burner for 3 hours, combueter temperature reaches about $1000^{\circ}C$ and CO is 77-103ppm at 1.55 excess air ratio and SOx and Cl are under 2ppm and 1ppm, respectively. This experiment demonstrate that purverized fuel made from food waste could be an alternative clean energy for high oil price era

  • PDF

Performance Analysis of Upgrading Process with Amine-Based CO2 Capture Pilot Plant

  • Kwak, No-Sang;Lee, Junghyun;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This study applied upgrades to the processes of a 10 MW wet amine $CO_2$ capture pilot plant and conducted performance evaluation. The 10 MW $CO_2$ Capture Pilot Plant is a facility that applies 1/50 of the combustion flue gas produced from a 500 MW coal-fired power plant, and is capable of capturing up to 200 tons of $CO_2$. This study aimed to quantitatively measure efficiency improvements of post-combustion $CO_2$ capture facilities resulting from process upgrades to propose reliable data for the first time in Korea. The key components of the process upgrades involve absorber intercooling, lean/rich amine exchanger efficiency improvements, reboiler steam TVR (Thermal Vapor Recompression), and lean amine MVR (Mechanical Vapor Recompression). The components were sequentially applied to test the energy reduction effect of each component. In addition, the performance evaluation was conducted with the absorber $CO_2$ removal efficiency maintained at the performance evaluation standard value proposed by the IEA-GHG ($CO_2$ removal rate: 90%). The absorbent used in the study was the highly efficient KoSol-5 that was developed by KEPCO (Korea Electric Power Corporation). From the performance evaluation results, it was found that the steam consumption (regeneration energy) for the regeneration of the absorbent decreased by $0.38GJ/tonCO_2$ after applying the process upgrades: from $2.93GJ/ton\;CO_2$ to $2.55GJ/tonCO_2$. This study confirmed the excellent performance of the post-combustion wet $CO_2$ capture process developed by KEPCO Research Institute (KEPRI) within KEPCO, and the process upgrades validated in this study are expected to substantially reduce $CO_2$ capture costs when applied in demonstration $CO_2$ capture plants.