• Title/Summary/Keyword: Coagulation and sedimentation

Search Result 115, Processing Time 0.031 seconds

Development of Computer Code for Simulation of Multicomponent Aerosol Dynamics -Uncertainty and Sensitivity Analysis- (다성분 에어로졸계의 동특성 묘사를 위한 전산 코드의 개발 -불확실성 및 민감도 해석-)

  • Na, Jang-Hwan;Lee, Byong-Whi
    • Nuclear Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.85-98
    • /
    • 1987
  • To analyze the aerosol dynamics in severe accidents of LMFBR, a new computer code entitled MCAD (Multicomponent Aerosol Dynamics) has been developed. The code can treat two component aerosol system using relative collision probability of each particles as sequences of accident scenarios. Coagulation and removal mechanisms incorporating Brownian diffusion and gravitational sedimentation are included in this model. In order to see the effect of particle geometry, the code makes use of the concept of density correction factor and shape factors. The code is verified using the experimental result of NSPP-300 series and compared to other code. At present, it fits the result of experiment well and agrees to the existing code. The input variables included are very uncertain. Hence, it requires uncertainty and sensitivity analysis as a supplement to code development. In this analysis, 14 variables are selected to analyze. The input variables are compounded by experimental design method and Latin hypercube sampling. Their results are applied to Response surface method to see the degree of regression. The stepwise regression method gives an insight to which variables are significant as time elapse and their reasonable ranges. Using Monte Carlo Method to the regression model of LHS, the confidence level of the results of MCAD and their variables is improved.

  • PDF

Development of Optimum PAC Dose Prediction Program using $^{14}C$-radiolabled MIB and HSDM ($^{14}C$-radiolabeled MIB와 HSDM을 이용한 최적 PAC 투입량 예측프로그램의 개발)

  • Kim, Young-Il;Bae, Byung-Uk;Kim, Kyu-Hyoung;Hong, Hyun-Su;Westerhoff, Paul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1123-1128
    • /
    • 2005
  • NIB(methylisoborneol) is an earthy/musty odor compound produced as a second metabolite by cyanobacteria and actinomycetes. MIB is not removed by conventional water treatment(coagulation, sedimentation, filtration) and its presence in tap water, even at low ng/L levels, can result in consumer complaints. PAC(powdered activated carbon) can effectively remove MIB when the correct dose is applied. But, since most operators in water treatment plants apply a PAC dose and then adjust that dose depending on direct observation (odor detection) after treatment, the result is often under-dose or eve,-dose. In this study, kinetic and isotherm tests using $^{14}C$-radiolabeled MIB were performed to determine coefficients for the HSDM(homogeneous surface diffusion model), including liquid film mass transfer coefficient($K_f$) and surface diffusion coefficient ($D_s$). The HSDM gave a reasonable fit and allowed prediction with the experimental data. Base on the HSDM, the authors developed an optimum PAC dose prediction program using the Excel spreadsheet. When the developed program was applied at two water treatment plants, the PAC dose based on the experience of operators in the water treatment plant was significantly different from that recommended by the newly developed program. If operators are willing to use the optimum PAC dose prediction program, it should solve dosing problems.

Seasonal Variation of Picoplankton Community in Lake Juam (주암호에서 미세조류의 계절적 군집 변화)

  • Cheong, Cheong-Jo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.271-277
    • /
    • 2010
  • The purpose of this study is to investigate the seasonal variation of picoplankton community in Lake Juam depending on the change of physico-chemical factors such as rainfall, water depth, DO and pH. The concentration of chlorophyll-a was most high as 18.03 mg/$m^3$ in July when the rainfall and water temperature were highest. The concentration was gradually decreased in October, April and that of January was decreased most low as 1.86 mg/$m^3$. The highest concentration of the Chl-a was shown at 2 and 5 m of water depth than surface, and the concentration was gradually decreased when the water depth becomes deep. Overall, microplankton was the highest rate as 33.9~54.2%, nanoplankton was 24.3~30.5% and picoplankton was 21.6~41.2%. Picoplankton was included as considerable concentration in the water of Juam lake. Therefore it is necessary to remove thoroughly the picoplankton in the water treatment processes such coagulation·sedimentation and sand filtration. The protoplasm released from destruction of picoplankton by chlorine has high possibility to cause regrowth of bacteria and pathogenic microorganism in the distribution system by playing the role of the assimilable organic carbon.

Suspended Solid Removal using Capillary-syphon Phenomenon -Evaluation of Possibility for Adapting Water Supply Process- (모세관 사이폰 현상을 이용한 부유물질 제거 - 상수처리공정 적용 가능성 평가 -)

  • Park, Dong-keun;Kim, Su-jung;Lee, Hae-goon;Jang, Jung-kuk;Han, Kee-baek;Kim, Chang-won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1285-1294
    • /
    • 2000
  • In this study, we investigated the possibility of the elimination of suspended solid and the factors affecting effluent water quality, and the amount of treated water, using the SS removal equipment adapted capillary-syphon phenomenon. Treated water quantity decreased as the accumulation time and the increase of head of capillary syphon, whereas the effluent water quality was improved. At coagulant dosage 0, 0.45, $1.82mg/{\ell}$ (as $Al^{+3}$) and limiting flux $107{\ell}/m/day$. turbidity of treated water was 2, 1, 0.5 NTU in each case. During operating period 15~17 days, the amount of washing water was just used 0.5~0.7% of the amount of treating water. So it is expected that coagulation & sedimentation and rapid filtration process can be replaced with the SS removal equipment adapted capillary-syphon phenomenon in water purification process.

  • PDF

Removal of Dissolved Organic Matter by Ozone-biological Activated Carbon process (오존처리와 생물활성탄 공정에 의한 상수원수 중의 용존유기물 제거)

  • 이상훈;문순식;신종철;최광근;심상준;박대원;이진원
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2003
  • The removal yield of dissolved organic matter in drinking water by biological activated carbon (BAC) process was investigated. The tested processes wer raw water-AC process (BAC1), raw water-ozonation-BAC process (BAC2), and raw water-ozonation-coagulation/sedimentation-BAC process (BAC3). The amounts of organic matter was measured as dissolved organic carbon (DOC), ulta-violet radiation at 254 nm wavelength ($UV_{254}$), total nitrogen (T-N), ammonia nitrogen (NH_3$-N), and total phosphate (T-P). As a results, 30.7% DOC was removed by BAC2 process, which showed higher removal efficiency than BAC1 or BAC3 processes. The removal yield of $UV_{254}$ in BAC1, BAC2, and BAC3 processes were observed as 45.3%, 44.6%, 58.4%, respectively. And the removal yield of ammonia nitrogen were 66%, 81%, 29% in each BAC processes. The optimal empty bed contact time (EBCT) of BAC processes was estimated as 10 minute. This study has shown that BAC process combined with ozone treatment was efficient for removing dissolved organic matter in water.