• Title/Summary/Keyword: CoO doping

Search Result 267, Processing Time 0.029 seconds

Synthesis of Ni-rich NCMA Precursor through Co-precipitation and Improvement of Cycling through Boron and Sn Doping (공침법을 통한 Ni-rich NCMA 합성과 붕소와 주석 도핑을 통한 사이클 특성 향상)

  • Jeon, Hyungkwon;Hong, Soonhyun;Kim, Minjeong;Koo, Jahun;Lee, Heesang;Choi, Gyuseok;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.210-215
    • /
    • 2022
  • Extensive research is being carried out on Ni-rich Li(NixCoyMn1-x-y)O2 (NCM) due to the growing demand for electric vehicles and reduced cost. In particular, Ni-rich Li(NixCoyMn1-x-y-zAlz)O2 (NCMA) is attracting great attention as a promising candidate for the rapid development of Co-free but electrochemically more stable cathodes. Al, an inactive element in the structure, helps to improve structural stability and is also used as a doping element to improve cycle capability in Ni-rich NCM. In this study, NCMA was successfully synthesized with the desired composition by direct coprecipitation. Boron and tin were also used as dopants to improve the battery performance. Macro- and microstructures in the cathodes were examined by microscopy and X-ray diffraction. While Sn was not successfully doped into NCMA, boron could be doped into NCMA, leading to changes in its physicochemical properties. NCMA doped with boron revealed substantially improved electrochemical properties in terms of capacity retention and rate capability compared to the undoped NCMA.

Luminescence Properties of Zn2SiO4:Mn, M(M=Cr, Ti) Green Phosphors Prepared by Sol-gel Method (졸-겔법으로 제조한 Zn2SiO4:Mn, M(M=Cr, Ti) 녹색 형광체의 발광특성)

  • 안중인;한정화;박희동
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.637-643
    • /
    • 2003
  • In order to improve the photoluminescent properties and crystallinity, Zn$_2$SiO$_4$:Mn, M(M=Cr, Ti) phosphors were synthesized by the sol-gel method. The willemite single phase was obtained at 110$0^{\circ}C$, which is lower temperature than that of the conventional solid-state reaction (130$0^{\circ}C$). The characteristics of fired samples were obtained by a 147 nm excitation source under VUV (Vacuum Ultraviolet). To investigation the effect of co-dopant, the content of Mn and the ratio of $H_2O$ to TEOS was fixed as 2 ㏖% and 36. 1, respectively. The highest emission intensity was obtained when the concentration of Cr and Ti was 0.1 ㏖% relative to Zn$_2$SiO$_4$:Mn. While the emission intensity decrease continuously the decay time improved as increased the Cr concentration. In the case of Ti added samples, however, the emission intensity increase up to 2 ㏖% concentration.

Doping Effects of Mg and/or Fe ions on Congruent $LiNbO_3$ Single Crystal Growth

  • Bae, So-Ik;J. Ichikawa;K. Shimamura;H. Onodera;T. Fukuda
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.139-143
    • /
    • 1997
  • The doping effects of Mg and/or Fe ions on congruent LiNbO$_3$ single crystal growth were studied in order to clarify the roles of MgO in Fe doped LiNbO$_3$ single crystals. The effective distribution coefficienct of Fe was found decreased drastically from 0.85 to 0.5 by the addition of MgO into the LiNbO$_3$ melt. M ssbauer spectra revealed that the addition of MgO reduces the occurrence of Fe2+ ions during growth in air. Therefore, it is likely that there would be two important roles of MgO in Fe doped LiNbO$_3$. One is to suppress the incorporation of all Fe ions, and the other is to reduce the concentration of Fe2+ ions among the total Fe ions.

  • PDF

The Structural Stability and Electrochemical Properties of Fe Doped Li[Ni0.575Co0.1Mn0.325]O2 (Fe을 도핑한 Li[Ni0.575Co0.1Mn0.325]O2의 구조적인 안정성 및 전기화학적 특성)

  • Yang, Su-Bin;Yoo, Gi-Won;Jang, Byeong-Chan;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2014
  • In this study, a positive-electrode material in a lithium secondary battery $Li[Ni_{0.575}Co_{0.1}Mn_{0.325}]O_2$ was synthesized as precursor by co-precipitation. Cathode material was synthesized by adding iron. The synthesized cathode material was analyzed by scanning electron microscope and x-ray diffraction. The analysis of x-ray diffraction showed that the a-axis and c-axis is increased by doping iron. And $I_{(003)}/I_{(104)}$ is increased and $I_{(006)}+I_{(102)}/I_{(101)}$ is decreased. Through this result, it was confirmed that the structural stability is improved. And impedance measurements show that the charge transfer resistance ($R_{ct}$) is lowered by doping iron. Consequently, electrochemical properties are improved by doping iron. In particular, the cycle characteristics are improved at a high temperature condition (328 K). Structural stabilities are contributing to the cycle properties.

Fabrication and Characteristics of Li-doped ZnO Thin Films for SAW Filter Applications

  • Ha, Jae-Soo;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.110-115
    • /
    • 1997
  • Li-doped ZnO films were prepared on Corning 1737 glass substrate by an rf magnetron sputtering technique using ZnO targets with various $Li_2CO_3$ contents ranging from 0 to 10 mol%. The effects of Li doping on the crystallinity and electrical properties of ZnO films were studied for their SAW filter applications. The film resistivity largely increased without suppressing the c-axis orientation and crystallinity with a small addition of Li. Heat treatment of the film at 40$0^{\circ}C$ induced that the film resistivity, c-axis orientation and crystallinity slightly increased. However, heat treatment of the film at 50$0^{\circ}C$ resulted in much lower resistivity than that of as-deposited film due to the increase of electron concentration caused by the evaporationof Li atoms from the ZnO film. Large addition of Li into the ZnO film rather diminished the film resistivity and suppressed the c-axis growth. It was concluded that a small doping of Li into the ZnO film and heat treatment at 40$0^{\circ}C$ caused the film resistivity to be high enough for SAW filter applications without suppression of the c-axis orientation and crystallinity.

  • PDF

Trimethylamine Sensing Characteristics of Molybdenum doped ZnO Hollow Nanofibers Prepared by Electrospinning (전기방사방법에 의해 합성된 ZnO 중공 나노섬유의 trimethylamine 가스 감응 특성)

  • Kim, Bo-Young;Yoon, Ji-Wook;Lee, Chul-Soon;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.419-422
    • /
    • 2015
  • Pure and Mo-doped ZnO hollow nanofibers were prepared by single capillary electrospinning and their gas sensing characteristics toward 5 ppm ethanol, trimethylamine (TMA), CO and $H_2$ were investigated. The gas responses and responding kinetics were dependent upon sensing temperature and Mo doping. Mo-doped ZnO hollow nanofibers showed high response to 5 ppm TMA ($R_a/R_g=111.7$, $R_a$: resistance in air, $R_g$: resistance in gas) at $400^{\circ}C$, while the responses of pure ZnO hollow nanofibers was low ($R_a/R_g=47.1$). In addition, the doping of Mo enhanced selectivity toward TMA. The enhancement of gas response and selectivity to TMA by Mo doping to ZnO nanofibers was discussed in relation to the interaction between basic analyte gas and acidic additive materials.

UV Light Induced Photocatalytic Degradation of Cyanides in Aqueous Solution over Modified $TiO_2$

  • Kim, Hyeong Ju;Kim, Jae Hyeon;Lee, Cheong Hak;Hyeon, Taek Hwan;Choe, Won Yong;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1371-1374
    • /
    • 2001
  • Metal doping was adopted to modify TiO2 (P-25) and enhance the photocatalytic degradation of harmful cyanides in aqueous solution. Ni, Cu, Co, and Ag doped TiO2 were found to be active photocatalysts for UV light induced degradation of aqueous cyanides generating cyanate, nitrate and ammonia as main nitrogen-containing products. The photoactivity of Ni doped TiO2 was greatly affected by the state of Ni, that is, the crystal size and the degree of reduction of Ni. The modification effects of some mixed oxides, that is, Ni-Cu/TiO2 were also studied. The activity of Ni-Cu/TiO2 for any ratio of Cu/Ni was higher than that of Ni- or Cu-doped TiO2, and the catalyst at the Cu/Ni ratio of 0.3 showed the highest activity for cyanide conversion.

Electrical Properties and Temperature Stability of Dysprosium and Erbium Co-doped Barium Titanate with Perovskite Structure for X7R MLCCs (Dysprosium과 Erbium이 동시 첨가된 X7R MLCC용 페로브스카이트 BaTiO3의 전기적특성과 온도안정성)

  • Noh, Tai-Min;Kim, Jin-Seong;Ryu, Ji-Seung;Lee, Hee-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.323-327
    • /
    • 2011
  • The effects of $Dy_2O_3$ and $Er_2O_3$ co-doping on electrical properties and temperature stability of barium titanate ($BaTiO_3$) ceramics were investigated in terms of microstructure and structural analysis. The dielectric constant and the insulation resistance (IR) of 0.7 mol% $Dy_2O_3$ and 0.3 mol% $Er_2O_3$ co-doped dielectrics had about 60% and 20% higher than the values of undoped one, respectively, and the temperature coefficient of capacitance (TCC) met the X7R specification. The addition of $Dy_2O_3$ contributed to electrical properties caused by increase of tetragonality; however, preferential diffusion of $Dy^{3+}$ ions toward A site in $BaTiO_3$ grain exhibited an adverse effect on temperature stability by grain growth. On the other hand, The $Er_2O_3$ addition in $BaTiO_3$ could affect the TCC behavior and the IR with suppression of grain growth caused by reinforcement of grain boundary and electrical compensation. Therefore, the enhanced electrical properties and temperature stability through the co-doping could be deduced from the increase of tetragonality and the suppression of grain growth.

High Thermoluminescence Properties of Dy+Ce, and Dy+Na Co-Doped MgB4O7 for a Light Tracer Application (비화공식 예광탄 응용을 위한 Dy+Ce 및 Dy+Na 이중 도핑된 MgB4O7의 높은 열발광 특성)

  • Jinu Park;Nakyung Kim;Jiwoon Choi;Youngseung Choi;Sanghyuk Ryu;Sung-Jin Yang;Duck Hyeong Jung;Byungha Shin
    • Korean Journal of Materials Research
    • /
    • v.33 no.1
    • /
    • pp.15-20
    • /
    • 2023
  • 'Tracers' are bullets that emit light at the backside so that the shooter can see the trajectory of their flight. These light-emitting bullets allow snipers to hit targets faster and more accurately. Conventional tracers are all combustion type which use the heat generated upon ignition. However, the conventional tracer has a fire risk at the impact site due to the residual flame and has a by-product that can contaminate the inside of the gun and lead to firearm failure. To resolve these problems, it is necessary to develop non-combustion-type tracers that can convert heat to luminance, so-called 'thermoluminescence (TL)'. Here, we highly improve the thermoluminescence properties of MgB4O7 through co-doping of Dy3++Ce3+ and Dy3++Na+. The presence of doping materials (Dy3+, Ce3+, Na+) was confirmed by XPS (X-ray photoelectron spectroscopy). The as-synthesized co-doped MgB4O7 was irradiated with a specific radiation dose and heated to 500 ℃under dark conditions. Different thermoluminescence characteristics were exhibited depending on the type or amounts of doping elements, and the highest luminance of 370 cd/m2 was obtained when Dy 10 % and Na 5 % were co-doped.

Optimization red emission of SrMoO4: Eu3+ via hydro-thermal co-precipitation synthesis using orthogonal experiment

  • Tan, Yongjun;Luo, Xuedan;Mao, Mingfu;Shu, Dehua;Shan, Wenfei;Li, Guizhi;Guo, Dongcai
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1403-1409
    • /
    • 2018
  • In the present study, the $SrMoO_4:Eu^{3+}$ phosphors has been synthesized through hydro-thermal co-precipitation method, and single factor and orthogonal experiment method was adopted to find optimal synthesis condition. It is interesting to note that hydro-thermal temperature is a prominent effect on the luminescent intensity of $SrMoO_4:Eu^{3+}$ red phosphor, followed by co-precipitation temperature, calcining time, and the doping amount of $Eu^{3+}$. The optimal synthesis conditions were obtained: hydro-thermal temperature is $145^{\circ}C$, co-precipitation temperature is $35^{\circ}C$, the calcining time is 2.5 h, and the doping amount of activator $Eu^{3+}$ is 25%. Subsequently, the crystalline particle size, phase composition and morphology of the synthesized phosphors were evaluated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results show that these phosphors possess a scheelite-type tetragonal structure, and the particle size is about $0.2{\mu}m$. Spectroscopic investigations of the synthesized phosphors are carried out with the help of photo-luminescence excitation and emission analysis. The studies reveal that $SrMoO_4:Eu^{3+}$ phosphor efficiently convert radiation of 394 nm-592 and 616 nm for red light, and the luminescence intensity of $SrMoO_4:Eu^{3+}$ phosphors is improved. $SrMoO_4:Eu^{3+}$ phosphors may be a potential application for enhancing the efficiency of white LEDs.