• Title/Summary/Keyword: CoO doping

Search Result 266, Processing Time 0.031 seconds

Chemical Doping of $TiO_2$ with Nitrogen and Fluorine and Its Support Effect on Catalytic Activity of CO Oxidation

  • Chakravarthy, G. Kalyan;Kim, Sunmi;Kim, Sang Hoon;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.142.2-142.2
    • /
    • 2013
  • The effect of substrate on catalytic activity of CO oxidation with transition metal Platinum nanoparticles on doped and undoped TiO2 was investigated. Titanium dioxide was doped chemically with non-metal anions including nitrogen and fluorine. Undoped TiO2 was synthesized via simple conventional sol-gel route. Thin films of titania were developed by spin coating technique and the characterization techniques SEM, XRD, UV-Vis Absorption Spectroscopy and XPS were carried out to examine the morphology of films, crystal phase, crystallites, optical properties and elemental composition respectively. XPS analysis from doped TiO2 confirmed that the nitrogen site were interstitial whereas fluorine was doped into TiO2 lattice substitutionally. Catalytic activity systems of Pt/doped-TiO2 and Pt/undoped-TiO2 were fabricated to reveal the strong metal-support interaction effect during catalytic activity of CO oxidation reactions. By arc plasma deposition technique, platinum nanoparticles with mean size of 2.7 nm were deposited on the thin films of doped and undoped titanium dioxide. The CO oxidation was performed with 40 Torr CO and 100 Torr O2 with 620 Torr He carrier gas. Turn over frequency was observed two to three folds enhancement in case of Pt/doped TiO2 as compared to Pt/TiO2. The electronic excitation and the oxygen vacancies that were formed with the doping process were the plausible reasons for the enhancement of catalytic activity.

  • PDF

K Addition Effect of Co3O4-based Catalyst for N2O Decomposition (N2O 분해반응용 Co3O4 기반 촉매의 K첨가 효과)

  • Hwang, Ra Hyun;Park, Ji Hye;Baek, Jeong Hun;Im, Hyo Been;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.35-40
    • /
    • 2018
  • $Co_3O_4$ catalysts for $N_2O$ decomposition were prepared by co-precipitation method. Ce and Zr were added during the preparation of the catalyst as promoter with the molar ratio (Ce or Zr) / Co = 0.05. Also, 1 wt% $K_2CO_3$ was doped to the prepared catalyst with impregnation method to investigate the effect of K on the catalyst performance. The prepared catalysts were characterized with SEM, BET, XRD, XPS and $H_2-TPR$. The $Co_3O_4$ catalyst exhibited a spinel crystal phase, and the addition of the promoter increased the specific surface area and reduced the particle and crystal size. It was confirmed that the doping of K improves the catalytic activity by increasing the concentration of $Co^{2+}$ in the catalyst which is an active site for catalytic reaction. The catalytic activity tests were carried out at a GHSV of $45,000h^{-1}$ and a temperature range of $250{\sim}375^{\circ}C$. The K-impregnated $Co_3O_4$ catalyst showed much higher activity than $Co_3O_4$ catalysts with promoter only. It is found that the K-impregnation increased the concentration of $Co^{2+}$ more than the added of promoter did, and lowered the reduction temperature to a great extent.

Hydrophillic Interaction Chromatography-tandem Mass Spectrometry Method for Identification and Quantitation of 5-MeO-DIPT and its Metabolites in Rat Urine

  • Kim, Yoon;Kim, Un-Yong;In, Moon-Kyo;Lee, Jae-Ick;Kwon, Oh-Seung;Yoo, Hye-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1158-1164
    • /
    • 2011
  • 5-Methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT), a psychoactive tryptamine derivative, is a hallucinogenic drug of abuse. In this study, 5-OH-DIPT and its metabolites were identified and the quantitative method was developed and validated by using hydrophilic interaction chromatography-tandem mass spectrometry (HILICMS/MS). Chromatographic separation was achieved on an Atlantis HILIC silica column ($5{\mu}m$, $100{\times}2.1\;mm$). The metabolites of 5-MeO-DIPT in rat urine were characterized via Q1 scanning and product ion scanning. As a consequence, 5-MeO-IPT, 5-OH-DIPT, 6-OH-5-MeO-DIPT and their glucuronide conjugates were detected and identified as the metabolites of 5-MeO-DIPT. Subsequently, a quantitative method for 5-MeO-DIPT and its major metabolites, 5-MeO-IPT and 5-OH-DIPT, was developed in multiple reactions monitoring (MRM) mode. The calibration curves for all analytes evidenced good linearity over the concentration range of 1-1000 ng/mL with linear correlation co-efficients ($r^2$) in excess of 0.99. The intra- and inter-day accuracy and precision were 92.2-110.2% and 1.5-9.9%, respectively.

Photoluminescence Properties of $Zn_{2-x-y}SiO_4:Mn_x,\;M_y$ Phosphors ($Zn_{2-x-y}SiO_4:Mn_x,\;M_y$계 형광체의 발광특성)

  • Cho, Bong Hyun;Sohn, Kee Sun;Park, Hee Dong;Chang, Hyun Ju;Hwang, Taek Sung
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.206-212
    • /
    • 1999
  • The main objective of the present investigation is to improve the photoluminescent performance of existing $Zn_2SiO_4:Mn$ phosphors by introducing a new co-dopant. The co-doping effect of Mg and/or Cr upon emission intensity and decay time was studied in the present investigation. The co-dopants incorporated into the $Zn_2SiO_4:Mn$ phosphors are believed to alter the internal energy state so that the change in emission intensity and decay time can be expected. Both Mg and Cr ions have a favourable influence on photoluminescence prpperties, for example, the Mg ion enhances the intensity of manganese green emission and the Cr ion shortens the decay time. The enhancement in emission intensity of $Zn_2SiO_4:Mn,\;Mg$ phosphors was interpreted by taking into account the result from the DV-X${\alpha}$ embedded cluster calculation. On the other hand, the energy transfer between Mn and Cr ions was found to be responsible for the shortening of decay time in$Zn_2SiO_4:Mn,\;Cr$ phosphors.

  • PDF

Effect of $Mg^{2+}$ co-doping on luminescent properties of $ZnGa_2O_4:Mn^{2+}$

  • Singh, Binod Kumar;Bartwal, Kunwar Singh;Ryu, Ho-Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.29-32
    • /
    • 2007
  • Zinc gallate, $ZnGa_2O_4:Mn^{2+}$ co-doped with different concentrations of $Mg^{2+}$ (0.001- 0.5 mol%) was prepared by solid state synthesis method. These compositions were investigated for their photoluminescence and cathodoluminescence properties. The optimized composition $Zn_{0.990}Mg_{0.005}Ga_2O_4:Mn_{0.005}$ shows higher luminescence intensity compared to the parent phosphor. The intense green emission peak was found at 504 nm. The $Mg^{2+}$ doping does not affect much the decay time. It remains <10 ms for these compositions which make them potential candidate for application in TV screens.

  • PDF

Effect of Al Doping Concentration on Resistance Switching Behavior of Sputtered Al-doped MgOx Films

  • Lee, Gyu-Min;Kim, Jong-Gi;Park, Seong-Hun;Son, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.307-307
    • /
    • 2012
  • In this study, we investigated that the resistance switching characteristics of Al-doped MgOx films with increasing Al doping concentration and increasing film thickness. The Al-doped MgOx based ReRAM devices with a TiN/Al-doped MgOx/Pt/Ti/SiO2 were fabricated on Si substrates. The 5 nm, 10 nm, and 15 nm thick Al-doped MgOx films were deposited by reactive dc magnetron co-sputtering at $300^{\circ}C$ and oxygen partial ratio of 60% (Ar: 16 sccm, O2: 24 sccm). Micro-structure of Al-doped MgOx films and atomic concentration were investigated by XRD and XPS, respectively. The Al-doped MgOx films showed set/reset resistance switching behavior at various Al doping concentrations. The process voltage of forming/set is decreased and whereas the initial current level is increased with decreasing thickness of Al-doped MgOx films. Besides, the initial current of Al-doped MgOx films is increased with increasing Al doping concentration in MgOx films. The change of resistance switching behavior depending on doping concentration was discussed in terms of concentration of non-lattice oxygen of Al-doped MgOx.

  • PDF

Growth of p-ZnO by RF-DC magnetron co-sputtering (RF-DC magnetron co-sputtering법에 의한 p-ZnO 박막의 성장)

  • Kang Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.277-280
    • /
    • 2004
  • p-ZnO films have been grown on (0001) sapphire substrates by RF-DC magnetron co-sputtering. The p-ZnO single crystalline thin films of the thickness about 120 nm were grown successfully. The dopant (Aluminum) was sputtered simultaneously from Al metal target by DC sputtering during rf-magnetron sputtering of ZnO at the substrate temperatures of $400^{\circ}C$ and $600^{\circ}C$ respectively. The crystallinity and optical properties of as-grown P-ZnO films have been characterized.

Voltage Enhancement of ZnO Oxide Varistors for Various Y2O3 Doping Compositions

  • Yoon, Jung-Rag;Lee, Chang-Bae;Lee, Kyung-Min;Lee, Heun-Young;Lee, Serk-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.152-155
    • /
    • 2009
  • The microstructure and the electrical properties of a ZnO varistor, which was composed of a ZnO-$Bi_2O_3$-$Sb_2O_3$-CoO- $MnO_2$ -NiO-$Nd_2O_3$ system, were investigated at various $Y_2O_3$ addition concentrations. $Y_2O_3$ played a role in the inhibition of the grain growth. As the $Y_2O_3$ content increased, the average grain size decreased from $6.8{\mu}m$ to $4{\mu}m$, and the varistor voltage($V_{1mA}$) greatly increased from 275 to 400 V/mm. The nonlinearity coefficient ($\alpha$) decreased from 72 to 65 with increasing $Y_2O_3$ amount. On the other hand, the leakage current ($I_L$) increased from 0.2 to 0.9 ${\mu}A$. These results confirmed that doping the varistors with $Y_2O_3$ is a promising production route for production of a higher fine-grained varistor voltage ($V_{1mA}$) which can dramatically reduce the size of the varistors.

Al Doping Effect of Pd/TiO2 for Improved Hydrogen Detection (수소 감지 성능 향상을 위한 Pd/TiO2 분말에서의 Al 도핑 효과)

  • Lee, Yeongan;Seo, Hyungtak
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.207-210
    • /
    • 2014
  • $TiO_2$ oxide semiconductor is being widely studied in various applications such as photocatalyst and photosensor. Pd/$TiO_2$ gas sensor is mainly used to detect $H_2$, CO and ethanol. This study focus on increasing hydrogen detection ability of Pd/$TiO_2$ in room temperature through Al-doping. Pd/$TiO_2$ was fabricated by the hydrothermal method. Contacting to Aluminum (Al) foil led to Al doping effect in Pd/$TiO_2$ by thermal diffusion and enhanced hydrogen sensing response. $TiO_2$ nanoparticles were sized at ~30 nm of diameter from scanning electron microscope (SEM) and maintained anatase crystal structure after Al doping from X-ray diffraction analysis. Presence of Al in $TiO_2$ was confirmed by X-ray photoelectron spectroscopy at 73 eV. SEM-energy dispersive spectroscopy measurement also confirmed 2 wt% Al in Pd/$TiO_2$ bulk. The gas sensing test was performed with $O_2$, $N_2$ and $H_2$ gas ambient. Pd/Al-doped $TiO_2$ did not response $O_2$ and $N_2$ gas in vacuum except $H_2$. Finally, the normalized resistance ratio ($R_{H2on}/R_{H2off}$) of Pd/Al-doped $TiO_2$ increases about 80% compared to Pd/$TiO_2$.