• Title/Summary/Keyword: CoMSIA

Search Result 85, Processing Time 0.032 seconds

Comparative Molecular Similar Indice Analysis on Fungicidal Activity of N-phenyl-O-phenylthionocarbamate Derivatives against Rice Sheath Blight and Phytophthora Blight (벼잎집무늬마름병균 및 고추역병균에 대한 N-Phenyl-O-phenyl-thionocarbamate 유도체들의 살균활성에 관한 비교분자 유사성 분석)

  • Soung, Min-Gyu;Yoo, Jae-Won;Jang, Seok-Chan;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.187-191
    • /
    • 2007
  • Comparative molecular similarity indice analysis (CoMSIA) models on the fungicidal activities of N-phenyl substituents (X) in N-phenyl-O-phenylthionocarbamate derivatives against rice sheath blight (Rhizoctonia solani: RS) and phytophthora blight (Phytophthora capsici: PC) were derived. Also, the characterizations of H-bonds between substrates and ${\beta}-tubulin$ were discussed quantitatively. It was revealed that, from the contour maps of CoMSIA models, the H-bond acceptor field contributed the most highly to fungicidal activity for two fungi in common. It is predicted that the selectivity in the fungicidal activity between two fungi is caused by results from the roles of H-bond donor disfavor functional groups in RS and H-bond acceptor disfavor functional groups in PC when these two groups induced at meta- and para-position on the N-phenyl ring. And also, if the substituents (X) are steric disfavor group, negative charge favor groups are introduced at the metaposition in RS and H-bond acceptor group is introduced at the para-position in PC, the antifungal activity against two fungi will be likely able to be increased.

Minimum Structural Requirements of R-phenoxy Substituents for Herbicidal Evaluation of O-(2-phenoxy)ethyl-N-aralkylcarbamate Analogues against Phytoene Desaturase (Phytoene Desaturase에 대한 O-(2-Phenoxy)ethyl-N-aralkylcarbamates 유도체의 제초성 평가를 위한 R-phenoxy 치환기들의 구조적인 요건)

  • Choi, Won-Seok;Lee, Jae-Whang;Hwang, Seung-Woo;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.1
    • /
    • pp.72-77
    • /
    • 2010
  • The minimum structural requirements of R-phenoxy substituents for herbicidal evaluation of O-(2-(R)-phenoxy)-ethyl-N-aralkylcarbamate (1-15) analogues against phytoene desaturase (PDS) based on the three dimensional quantitative structure-activity relationships (3D-QSARs: CoMFA and CoMSIA) were studied quantitatively. The correlativity and predictability ($r^2_{cv.}=0.753$ and $r^2_{ncv.}=0.964$) of the CoMFA 1 model were higher than those of the rest models. The PDS inhibitory activities from the optimized CoMFA 1 model were depend upon the steric field (44.0%), electrostatic field (36.3%), and hydrophobic field (19.6%) of O-(2-(R)-phenoxy)ethyl-Naralkylcarbamate analogues. From the CoMFA contour maps on the structure of the most active compound (5), if it has the steric favor at meta-, para-position on the phenoxy ring, the negative charge favor in meta-position and positive charge favor in the outside part of para-position, the inhibitory activity will be predicted to increase. Also, if ortho-, para-position, and outside of phenoxy ring are hydrophilic favor, and meta-position is hydrophobic favor, it is predicted that the inhibitory activity against PDS will be able to increase.

The Influence of the Substituents for the Insecticidal Activity of N' -phenyl-N-methylformamidine Analogues against Two Spotted Spider Mite (Tetranychus urticae) (두 점박이 응애(Tetranychus urticae) 에 대한 N'-phenyl-N-methylformamidine 유도체의 살충활성에 미치는 치환기들의 영향)

  • Lee, Jae-Whang;Choi, Won-Seok;Lee, Dong-Guk;Chung, Kun-Hoe;Ko, Young-Kwan;Kim, Tae-Joon;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.319-325
    • /
    • 2010
  • To understand the influences of the substituents ($R_1{\sim}R_4$) on insecticidal activity of N'-phenyl-N-methylformamidine analogues (1~22) against two spotted spider mite (Tetranychus urticae), comparative molecular field analysis (CoMFA) model and comparative molecular similarity indices analysis (CoMSIA) model as three dimensional quantitative structure-activity relationships (3D-QSARs) model were derived and discussed quantitatively. From the results, the correlativity and predictability ($r^2{_{cv.}}=0.575$ and $r^2{_{ncv.}}=0.945$) of the CoMFA 1 model were higher than those of the rest models. The the CoMFA 1 and CoMSIA 1 model with the sensitivity of the perturbation and the prediction produced ($d_q{^{2'}}/dr^2{_{yy}}=1.071{\sim}1.146$ & $q^2=0.545{\sim}0.626$) by a progressive scrambling analysis were not dependent on chance correlation. The insecticidal activities from the optimized CoMFA 1 model were depend upon the steric field (62.5%), electrostatic field (28.9%), and hydrophobic field (8.6%) of N'-phenyl-N-methylformamidine analogues. Therefore, the inhibitory activities with optimized CoMFA 1 model were dependent upon steric factor. From the contour maps of the optimized models, it is predicted that the structural distinctions that contribute to the insecticidal activity will be able to applied new potent insecticides design.

Ligand Design of 5,5'-Diphenylimidazolidine-2,4-dione Analogues as A New Class of Potent Inhibitors of Fatty Acid Amide Hydrolase (새로운 Fatty Acid Amide Hydrolase 저해제로서 5,5'-Diphenylimidazolidine-2,4-dione 유도체의 리간드 설계)

  • Cho, Jong-Un;Soung, Min-Gyu;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.119-123
    • /
    • 2008
  • 3D-QSARs (3 dimensional quantitative structrue-activity relationships) on the inhibition activities of 3-substituted-5,5'-diphenylimidazolidine-2,4-dione derivatives (1-22) against FAAH (fatty acid amide hydrolase) were studied quantitatively using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indice analysis) methods. The statistical results of the CoMFA 1A and CoMSIA 2F model are better predictability and fitness. And also, the designed X=I, Y=$N_{2}^{+}$-substituent (P1: $Pred.pI_{50}$=6.55), according to the contour maps with information of the two models, showed the most inhibition activity against FAAH.

3D-QSAR Study on the Influence of Alrylamino (R) Substituents on Herbicidal Activity of Thiourea Analogues

  • Soung, Min-Gyu;Park, Kwan-Yong;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1469-1473
    • /
    • 2010
  • Influences of alrylamino (R) substituents on the herbicidal activity ($pI_{50}$) of 1-(4-chloro-2-fluoro-5-propargyloxypheny)-3-(R)-thiourea analogues (1 ~ 35) against the barnyard grass (Echinochloa crusgalli) in the pre-emergence step were discussed quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) as the three dimensional quantitative structure-activity relationship (3D-QSAR) method. The statistically most satisfactory CoMFA models for the herbicidal activity against the barnyard grass had the better predictability ($r^2{_{cv.}}$) and correlativity ($r^2{_{ncv.}}$) than those of CoMSIA models. The optimized CoMFA model 1($r^2{_{cv.}}$ = 0.531 & $r^2{_{ncv.}}$ = 0.931) with the sensitivity to the perturbation (${d_q}^{2'}{dr^2}_{yy'}$ = 1.081) and the prediction ($q^2$ = 0.475) produced by a progressive scrambling analyses were not dependent on chance correlation. And statistical qualities with the atom based fit alignment (AF) were slightly higher than those of the field fit alignment (FF). According to the optimized CoMFA model 1, the contribution ratio (%) of the steric field (76.9%) on the herbicidal activity of the Thioureas was three-fold higher than that of the electrostatic field (20.1%) and the hydrophobic field (3.0%) had the least influence. A steric favor group is on the vicinity of the nitrogen atom in alrylamino (R) substituent, and a steric disfavor group is on the outer side of alrylamino (R) substituent. Thus, as the size of alrylamino (R) substituent increases, so does the herbicidal activity of the substituent.

3D-QSAR and docking studies of selective COX-2 inhibitors

  • Kim, Hye-Jung;Chae, Chong-Hak;Yoo, Sung-Eun;Park, Kyung-Lae
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.247.2-248
    • /
    • 2003
  • The three-dimensional quantitative structure-activity relationship (3D-QSAR) approach using comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) was applied to 62 derivatives known as COX-2 selective inhibitors. Partial least square (PLS) analyses produced good predicted models with q2 value of 0.803 (s=0.285, F=215.401, r2=0.951) and 0.769 (s=0.192, F=245.364, r2=0.980) for CoMFA and CoMSIA, respectively. (omitted)

  • PDF

Molecular modeling of COX-2 inhibitors: 3D-QSAR and docking studies

  • Kim, Hye-Jung;Chae, Chong-Hak;Yoo, Sung-Eun;Yi, Kyu-Yang;Park, Kyung-Lae
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.65.2-65.2
    • /
    • 2003
  • 88 selective COX-2 inhibitors belonging to three chemical classes (triaryl rings, diaryl cycloalkanopyrazoles, and diphenyl hydrazides) were studied using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Partial least squares analysis produced statistically significant models with q values of 0.84 and 0.79 for CoMFA and CoMSIA, respectively. The key spatial properties were detected by careful analysis of the isocontour maps. The binding energies calculated from flexible docking correlated with inhibitory activities by the least-squares fit method. (omitted)

  • PDF

Synthesis and Ligand Based 3D-QSAR of 2,3-Bis-benzylidenesuccinaldehyde Derivatives as New Class Potent FPTase Inhibitor, and Prediction of Active Molecules

  • Soung, Min-Gyu;Kim, Jong-Han;Kwon, Byoung-Mog;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1355-1360
    • /
    • 2010
  • In order to search new inhibitors against farnesyl protein transferase (FPTase), a series of 2,3-bis-benzylidenesuccinaldehyde derivatives (1-29) were synthesized and their inhibition activities ($pI_{50}$) against FPTase were measured. From based on the reported results that the inhibitory activities of dimers 2,3-bis-benzylidenesuccinaldehydes were higher than those of monomers cinnamaldehydes, 3D-QSARs on FPTase inhibitory activities of the dimers (1-29) were studied quantitatively using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The statistical qualities of the optimized CoMFA model II ($r^2{_{cv.}}$= 0.693 and $r^2{_{ncv.}}$= 0.974) was higher than those of the CoMSIA model II ($r^2{_{cv.}}$ = 0.484 and $r^2{_{ncv.}}$ = 0.928). The dependence of CoMFA models on chance correlations was evaluated with progressive scrambling analyses. And the inhibitory activity exhibited a strong correlation with steric factors of the substrate molecules. Therefore, from the results of graphical analyses on the contour maps and of predicted higher inhibitory active compounds, it is suggested that the structural distinctions and descriptors that contribute to inhibitory activities ($pI_{50}$) against FPTase will be able to applied new inhibitor design.

3D-QSAR and Molecular Docking Studies on Benzotriazoles as Antiproliferative Agents and Histone Deacetylase Inhibitors

  • Li, Xiaolin;Fu, Jie;Shi, Wei;Luo, Yin;Zhang, Xiaowei;Zhu, Hailiang;Yu, Hongxia
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2387-2393
    • /
    • 2013
  • Benzotriazole is an important synthetic auxiliary for potential clinical applications. A series of benzotriazoles as potential antiproliferative agents by inhibiting histone deacetylase (HDAC) were recently reported. Three-dimensional quantitative structure-activity relationship (3D-QSAR), including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), were performed to elucidate the 3D structural features required for the antiproliferative activity. The results of both ligand-based CoMFA model ($q^2=0.647$, $r^2=0.968$, ${r^2}_{pred}=0.687$) and CoMSIA model ($q^2=0.685$, $r^2=0.928$, ${r^2}_{pred}=0.555$) demonstrated the highly statistical significance and good predictive ability. The results generated from CoMFA and CoMSIA provided important information about the structural characteristics influence inhibitory potency. In addition, docking analysis was applied to clarify the binding modes between the ligands and the receptor HDAC. The information obtained from this study could provide some instructions for the further development of potent antiproliferative agents and HDAC inhibitors.