The Influence of the Substituents for the Insecticidal Activity of N' -phenyl-N-methylformamidine Analogues against Two Spotted Spider Mite (Tetranychus urticae)

두 점박이 응애(Tetranychus urticae) 에 대한 N'-phenyl-N-methylformamidine 유도체의 살충활성에 미치는 치환기들의 영향

  • Lee, Jae-Whang (Department of Applied Biology & Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Choi, Won-Seok (Department of Applied Biology & Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Lee, Dong-Guk (Moghu Research Center Ltd.) ;
  • Chung, Kun-Hoe (Moghu Research Center Ltd.) ;
  • Ko, Young-Kwan (Korea Research Institute of Chemical Technology) ;
  • Kim, Tae-Joon (Dongbu Advanced Research Institute) ;
  • Sung, Nack-Do (Department of Applied Biology & Chemistry, College of Agriculture and Life Science, Chungnam National University)
  • 이재황 (충남대학교 농업생명과학대학 응용생물화학과) ;
  • 최원석 (충남대학교 농업생명과학대학 응용생물화학과) ;
  • 이동국 (목우연구소(주)) ;
  • 정근회 (목우연구소(주)) ;
  • 고영관 (한국화학연구원 바이오소재연구센터) ;
  • 김태준 ((주)동부한농 동부기술원) ;
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학과)
  • Received : 2010.09.14
  • Accepted : 2010.10.15
  • Published : 2010.12.31

Abstract

To understand the influences of the substituents ($R_1{\sim}R_4$) on insecticidal activity of N'-phenyl-N-methylformamidine analogues (1~22) against two spotted spider mite (Tetranychus urticae), comparative molecular field analysis (CoMFA) model and comparative molecular similarity indices analysis (CoMSIA) model as three dimensional quantitative structure-activity relationships (3D-QSARs) model were derived and discussed quantitatively. From the results, the correlativity and predictability ($r^2{_{cv.}}=0.575$ and $r^2{_{ncv.}}=0.945$) of the CoMFA 1 model were higher than those of the rest models. The the CoMFA 1 and CoMSIA 1 model with the sensitivity of the perturbation and the prediction produced ($d_q{^{2'}}/dr^2{_{yy}}=1.071{\sim}1.146$ & $q^2=0.545{\sim}0.626$) by a progressive scrambling analysis were not dependent on chance correlation. The insecticidal activities from the optimized CoMFA 1 model were depend upon the steric field (62.5%), electrostatic field (28.9%), and hydrophobic field (8.6%) of N'-phenyl-N-methylformamidine analogues. Therefore, the inhibitory activities with optimized CoMFA 1 model were dependent upon steric factor. From the contour maps of the optimized models, it is predicted that the structural distinctions that contribute to the insecticidal activity will be able to applied new potent insecticides design.

두 점박이 응애(Tetranychus urticae)에 대한 N'-phenyl-N-methylformamidine 유도체(1-22)의 살충활성에 관한 치환기 ($R_1{\sim}R_4$)들의 영향을 이해하기 위하여 3차원적인 정량적 구조-활성관계(3D-QSAR) 모델인 비교분자장분석(CoMFA) 모델 및 비교분자 유사성지수분석(CoMSIA) 모델을 유도하고 정량적으로 검토하였다. 그 결과로부터 CoMFA 1 모델의 예측성 및 상관성($r^2{_{cv.}}=0.575$$r^2{_{ncv.}}=0.945$)이 가장 양호하였다. 또한, 순자혼합화 분석으로부터 CoMFA 1 및 CoMSIA 1 모델($d_q{^{2'}}/dr^2{_{yy}}=1.071{\sim}1.146$$q^2=0.545{\sim}0.626$)은 우연상관성에 저촉되지 않는 최적화 모델이었다. 최적화된 CoMFA 1 모델로 부터 두 점박이 응애에 대한 N'-phenyl-N-methylformamidine 유도제들의 저해활성에 관한 기여비율은 입체장 62.5%, 정전기장 28.9% 및 소수성장 8.6% 이었다. 그러므로 CoMFA 1 모델에 의한 살충활성은 입체장에 의존적이었다. 또한, 최적화 모델들의 등고도로부터 살충활성에 기여하는 구조적인 특징들은 새로운 살충제들을 설계하는데 적용할 수 있을 것으로 예상된다.

Keywords

References

  1. Akamatsu, M. (2002) Current state and perspectivies of 3D-QSAR. Curr. Topics Med. Chem. 2:1381∼1394. https://doi.org/10.2174/1568026023392887
  2. Aziz, A. S. and Knowles, C. O. (1973) Inhibition of monoamine oxidase by the pesticide Chlordimeform and related compounds. Nature, 242:417∼418. https://doi.org/10.1038/242417a0
  3. Booth, T. F. (1989) Effects of biogenic amines and adrenergic drugs on oviposition in the cattle tickBoophilus: Evidence for octopaminergic innervation of the oviduct. Exp. & Appl. Acarology, 7:259∼266. https://doi.org/10.1007/BF01197920
  4. Clark, R. D. and Fox, P. C. (2004) Statistical variation in progressive scrambling. J. Comput-Aided Mol. Design, 18:2821-2826.
  5. Cramer, R. D. III, Patterson, D. E. and Bunce, J. D. (1988) Comparative molecular field analysis (CoMFA), 1. Effect of shape on the binding of steroid to carrier proteins. J. Am. Chem. Soc. 110:5959-5967. https://doi.org/10.1021/ja00226a005
  6. Etter, M. C. (1990) Encoding and decoding hydrogen-bond patterns of organic compounds. Acc. Chem. Res. 23:120-126. https://doi.org/10.1021/ar00172a005
  7. Evan, P. D. and Gee, J. D. (1980) Action of formamidine pesticides on octopamine receptors. Nature. 287:60-62. https://doi.org/10.1038/287060a0
  8. Harrison, I. R., Kozlik, A., McCarthy, J. F., Palmer, B. H., Wakerley, S. B., Watkins, T. I. and Weighton, D. M. (1972) 1,5-Bis(2,4-dimethylphenyl)-3-methyl-1,3,5-triazapenta- 1,4-diene, a new acaricide active against strains of mites resistant to organophosphorus and bridged diphenyl compounds. Pestic. Sci. 3:679-680. https://doi.org/10.1002/ps.2780030603
  9. Heritage, T. W. and D. R. Lowis (1999) Molecular hologram QSAR. In Rational Drug Design: Novel Methodology and Practical Applications (Parrill, A. L. and Reddy, M. R. ed.), ACS Symposium Series, No. 719, ACS. Washington, DC. pp. 212-225.
  10. Hollingworth, R. M. and Murdock, L. L. (1979) Octopamine receptors, adenosine 3',5'-monophosphate, and neural control of firefly flashing. Science. 203:65-68. https://doi.org/10.1126/science.214856
  11. Hollingworth, R. M. and Lund, A. E. (1982) Biological and Neurotoxic Effects of Amidine Pesticides. In Insecticide Mode of Action. (Coats, J. R. ed.), Academic Press, Toronto, pp. 189-227.
  12. Klebe, G, Abraham, U. and Mietzner, T. (1994) Molecular similarity indexes in a comparative analysis (comsia) of drug molecules to correlate and predict their biological-activity. J. Med. Chem. 37:4130-4146. https://doi.org/10.1021/jm00050a010
  13. Kubinyi, H. (1993) QASR: Hansch Analysis and Related Approaches. VCH Verlags-geslschaft mbH, D-69451 Weinheim, Germany. pp. 57-61.
  14. Schneider, G. and Baringhause, K. -H. (2008) Molecular Design; Concepts and Applications. Wiley-VCH Verlag GmbH & Co. KGaA. pp. 64-65.
  15. Soung, M. G., Lee. Y. J. and Sung, N. D. (2009) 3D-QSAR of herbicidal 2-N-phenylisoindoline-1-one analogues as a new class of potent inhibitors of protox. Bull. Kor. Chem. Soc. 30: 613-617. https://doi.org/10.5012/bkcs.2009.30.3.613
  16. Tripos, Sybyl (2010) Molecular Modeling and QSAR Software on CD-ROM (Ver. 8.1), Tripos Associates Inc., 1699 S. Hanley Rd. Suite 303, St. Louis, MO. 63144-2913, U.S.A.
  17. Wold, S., Johansson, E. and Cocchi, M. (1993) PLS-partial least squares projections to latent structures. In 3D-QSAR in Drug Design: Theory, Methods and Applications (H. Kubinyi, H. ed.), ESCOM, Leiden. pp. 523-550.
  18. 성낙도 (2003) 정량적인 구조-활성상관(QSAR) 기법에 의한 새로운 농약의 개발. IV. 국내 의 연구동향과 전망. 한국응용생명화학회지, 46:155∼164.
  19. 이재황, 최원석, 이동국, 정근회, 고영관, 김태준, 성낙도 (2010) 두점박이 응애(Tetranychus urticae)에 대한 N'-phenyl-N-methylformamidine 유도체의 살충활성과 새로운 고활성 화합물들의 설계. 한국농약과학회지, 14:191-198.