• Title/Summary/Keyword: CoMSIA

Search Result 85, Processing Time 0.028 seconds

Comparative Molecular Similarity Indices Analysis (CoMSIA) on the Melanogenesis Inhibitory Activities of Alkyl-3,4-dihydroxy- benzoate and N-alkyl-3,4-dihydroxybenzamide Derivatives.

  • Kim, Sang-Jin;Sung, Nack-Do;Lee, Sang-Ho
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.733-740
    • /
    • 2003
  • To find a new substance with superior melanogenesis inhibitory activity, the bioactivities of alkyl-3,4-dihydroxy-5-substituted benzoate (A) and N-alkyl-3,4-dihydroxy-5-substituted benzamide (B) derivatives as substrate of tyrosinase were measured in mouse melanoma cells. And the bioactivities analyzed using comparative molecular similarity indices analysis (CoMSIA). From the CoMSIA model, when cross-validation value (q$^2$) is 0.713 at four components, the pearson correlation coefficient ($r^2$) is 0.900. Unknown compounds were predicted, using QSAR analyzed results from the CoMSIA methods. Excellent agreement was obtained between the measured and the predicted bioactivities of unknown compounds. As the results of prediction from CoMSIA, we could conclude that the bioactivities were increased from pl$_{50}$=3.18-4.80 to above 5.17 by creation of 6-methylheptyl, n-pentylphenyl and 2-hydroxypentylphenyl group etc,.,.

  • PDF

CoMFA and CoMSIA on the Inhibition of Calcineurin-NFAT Signaling by Blocking Protein-Protein Interaction with N-(4-Oxo-1(4H)-naphthalenylidene)benzenesulfonamide Derivatives

  • Myung, Pyung-Keun;Park, Kyung-Yong;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1941-1945
    • /
    • 2005
  • To raises the possibility of designing effective inhibitors, 3D-QSAR for the inhibition of calcineurin-NFAT signaling by new N-(4-oxo-1(4H)-naphthalenylidene benzenesulfonamide derivatives as inhibitors of intracellular protein-protein interactions were studied using CoMFA and CoMSIA methodology. The three templates, N-(4-oxo-1(4H)-naphthalenylidene)benzenesulfonamide (A), benzenesulfonamide (B) and 4-oxo-1(4H)-naphthalenylidene (C) were selected to improve the statistic of the present 3D-QSAR models. The best models with combination of standard field in CoMFA, and steric field and electrostatic field in CoMSIA derived from the template, B and C, because most of the compounds tend not to be aligned in template A. From the based on the CoMFA and CoMSIA contour maps, the $R_1$ and $R_2$ groups on 4-oxo-1(4H) naphthalenylidene ring are steric favor. The ortho position on the benzenesulfonyl ring is steric disfavor and the meta position is steric favor. In addition, the oxygene atom of carbonyl group will have better inhibition activities as it has a negative charge favor. From these findings, we can conclude that the analyses of the contour maps provided insight into possible modification of molecules for effective inhibitiors.

Docking, CoMFA and CoMSIA Studies of a Series of N-Benzoylated Phenoxazines and Phenothiazines Derivatives as Antiproliferative Agents

  • Ghasemi, Jahan B.;Aghaee, Elham;Jabbari, Ali
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.899-906
    • /
    • 2013
  • Using generated conformations from docking analysis by Gold algorithm, some 3D-QSAR models; CoMFA and CoMSIA have been created on 39 N-benzoylated phenoxazines and phenothiazines, including their S-oxidized analogues. These molecules inhibit the polymerization of tubulin into microtubules and thus they have been studied for the development of antitumor drugs. Training set for the CoMFA and CoMSIA models using 30 docked conformations gives $q^2$ Leave one out (LOO) values of 0.756 and 0.617, and $r^2$ ncv values of 0.988 and 0.956, respectively. The ability of prediction and robustness of the models were evaluated by test set, cross validation (leave-one-out and leave-ten-out), bootstrapping, and progressive scrambling approaches. The all-orientation search (AOS) was used to achieve the best orientation to minimize the effect of initial orientation of the structures. The docking results confirmed CoMFA and CoMSIA contour maps. The docking and 3D-QSAR studies were thoroughly interpreted and discussed and confirmed the experimental $pIC_{50}$ values.

CoMFA and CoMSIA 3D QSAR Studies on Pimarane Cyclooxygenase-2 (COX-2) Inhibitors

  • Suh, Young-Ger;Lee, Kwang-Ok;Park, Hyun-Ju;Kim, Young-Ho;Moon, Sung-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.250.1-250.1
    • /
    • 2003
  • In this work, we have conducted 3D-QSAR studies on a series of acanthonic acid derivatives that act as COX-2 inhibitors, using two different methods: comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). CoMFA and CoMSIA analysis of twenty five pimarane analogues produced good models with high predictive abilities. (omitted)

  • PDF

3D-QSARs analyses for Tyrosinase Inhibitory Activity of 2-Phenyl-1,4-benzopyrone (Flavones) Analogues and Molecular Docking (2-Phenyl-1,4-benzopyrone 유도체 (Flavones)의 Tyrosinase 저해활성에 관한 3D-QSARs 분석과 분자도킹)

  • Park, Joon-Ho;Sung, Nack-Do
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.4
    • /
    • pp.225-231
    • /
    • 2010
  • To understand the inhibitory activity with changing hydroxyl substituents ($R_l-R_9$) of polyhydroxy substituted 2-phenyl-l,4-benzopyrone analogues (1-25) against tyrosinase (PDB ID: oxy-form; 1WX2), molecular docking and the three dimensional quantitative structure-activity relationships (3D-QSARs: Comparative molecular field analysis (CoMFA) & Comparative molecular similarity indices analysis (CoMSIA)) were studied quantitatively. The statistically best models were CoMFA 1 and CoMSIA 1 model from the results. The optimized CoMSIA 1 model with the sensitivity of the perturbation and the prediction produced ($dq^2'/dr_{yy'}^2$=1.009 & $q^2$=0.51l) by a progressive scrambling analysis were not dependent on chance correlation. The inhibitory activities with optimized CoMSIA 1 model were dependent upon electrostatic factor (51.4%) of substrate molecules. Contour mapping the 3D-QSAR models to the active site of tyrosinase provides new insight into the interaction between tyrosinase as receptor and 2-phenyl-l,4-benzopyrone analogues as inhibitor. Therefore, the results will he able to apply to the optimization of a new potent tyrosinase inhibitors.

Ligand-based QSAR Studies on the Indolinones Derivatives as Inhibitors of the Protein Tyrosine Kinase of Fibroblast Growth Factor Receptor by CoMFA and CoMSIA

  • Hyun, Kwan-Hoon;Kwack, In-Young;Lee, Do-Young;Park, Hyung-Yeon;Lee, Bon-Su;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1801-1806
    • /
    • 2004
  • Ligand-based quantitative structure-activity relationship (QSAR) studies were performed on indolinones derivatives as a potential inhibitor of the protein tyrosine kinase of fibroblast growth factor receptor (FGFR) by comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) implemented in the SYBYL packages. The initial X-ray structure of docked ligand (Su5402) to FGFR was used to minimize the 27 training set molecules using TRIPOS force field. Seven models were generated using CoMFA and CoMSIA with grid spacing 2 ${\AA}$. After the PLS analysis the best predicted CoMSIA model with hydrophobicity, hydrogen bond donor and acceptor property showed that a leave-one out(LOO) cross validated value $({r^2}_{cv})^$ and non-cross validated conventional value $({r^2}_{ncv})^$ are 0.543 and 0.938, respectively.

CoMFA and CoMSIA on the Neuroblocking Activity of 1-(6-Chloro-3-pyridylmethyl)-2-nitroiminoimidazolidine Analogues

  • Sung, Nack-Do;Jang, Seok-Chan;Choi, Kyoung-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1741-1746
    • /
    • 2006
  • 3D-QSARs on the neuroblocking activities by 1-(6-chloro-3-pyridylmethyl)-2-nitroiminoimidazolidine analogues as agonist at the nicotinic acetylcholine receptor (nAChR) were studied quantitatively using CoMFA and CoMSIA methodologies. The statistical results of CoMFA (A5: $r^2\;_{cv.}\;=\;0.707\;&\;r^2\;_{ncv.}$= 0.986) and CoMSIA model (A3: $r^2\;_{cv.}$ = 0.715 & $r^2\;_{ncv.}$ = 0.961) showed the best predictability and fitness for neuroblocking activity based on the cross-validated value and non-cross validated value. The steric and H-bond acceptor nature of a compound were essential for high activity. The study on 3D-QSARs between substrate molecules and their neuroblocking activities appears to be an useful approach for designing better neuroblocking drug development.

Quantitative Structure Activity Relationship between Diazabicyclo-[4.2.0]octanes Derivatives and Nicotinic Acetylcholine Receptor Agonists

  • Kim, Eun-Ae;Jung, Kyoung-Chul;Sohn, Uy-Dong;Im, Chae-Uk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.55-59
    • /
    • 2009
  • Three dimensional quantitative structure activity relationship between diazabicyclo[4.2.0]octanes and nicotinic acetylcholine receptor($h{\alpha}4{\beta}2$ and $h{\alpha}3{\beta}4$) agonists was studied using comparative molecular field analysis(CoMFA) and comparative molecular similarity indices analysis(CoMSIA). From 11 CoMFA and CoMSIA models, CoMSIA with steric and electrostatic fields gave the best predictive models($q^2=0.926$ and 0.945, ${r^2}_{ncv}=0.983$ and 0.988). This study can be used to develop potent $h{\alpha}4{\beta}2$ receptor agonists with low activity on $h{\alpha}3{\beta}4$ subtype.

Ligand Based CoMFA, CoMSIA and HQSAR Analysis of CCR5 Antagonists

  • Gadhe, Changdev G.;Lee, Sung-Haeng;Madhavan, Thirumurthy;Kothandan, Gugan;Choi, Du-Bok;Cho, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2761-2770
    • /
    • 2010
  • In this study, we have developed QSAR models for a series of 38 piperidine-4-carboxamide CCR5 antagonists using CoMFA, CoMSIA and HQSAR methods. Developed models showed good statistics in terms of $q^2$ and $r^2$ values. Best predictions obtained with standard CoMFA model ($r^2$ = 0.888, $q^2$ = 0.651) and combined CoMSIA model ($r^2$ = 0.892, $q^2$ = 0.665) with electrostatics and H-bond acceptor parameter. The validity of developed models was assessed by test set of 9 compounds, which showed good predictive correlation coefficient for CoMFA (0.804) and CoMSIA (0.844). Bootstrapped analysis showed statistically significant and robust CoMFA (0.968) and CoMSIA (0.936) models. Best HQSAR model was obtained with a $q^2$ of 0.662 and $r^2$ of 0.936 using atom, connection, hydrogen, donor and acceptor as parameters and fragment size (7-10) with optimum number of 6 components. Predictive power of developed HQSAR model was proved by test set and it was found to be 0.728.

Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Index Analysis (CoMSIA) Study of Mutagen X

  • Bang, Soo-Jin;Cho, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1525-1530
    • /
    • 2004
  • Mutagen X (MX) exists in our drinking water as the bi-products of chlorine disinfection. Being one of the most potent mutagen, it attracted much attention from many researchers. MX and its analogs are synthesized and modeled by quantitative structure activity relationship (QSAR) methods. As a result, factors affecting this class of compounds have been found to be steric and electrostatic effects. We tried to collect all the data available from the literature. With both CoMFA and CoMSIA various combinations of physiochemical parameters were systematically studied to produce reasonable 3-dimensional models. The best model for CoMFA gave $q^2$ = 0.90 and $r^2$ = 0.97, while for CoMSIA $q^2$ = 0.85 and $r^2$ = 0.94. So the models seem to be reasonable. Unlike previous result of CoMFA, in our case steric parameter alone gave the best statistics. Although the steric contribution was found to be the most important in both CoMFA and CoMSIA, steric parameter along with electrostatic parameter produced slightly better model in CoMSIA. Overall, steric contribution is clearly the most important single factor. However, when we compare chlorine and bromine substitution, chlorine substitution can be more mutagenic. This indicates that other factors such as electrostatic effect also influence the mutagenicity. From the contour maps, steric contribution seems to be focused on rather small area near C6 substituent of the furanone ring, rather than C3 substituent. Therefore the locality of steric contribution can play a significant role in mutagenicity.