DOI QR코드

DOI QR Code

CoMFA and CoMSIA on the Neuroblocking Activity of 1-(6-Chloro-3-pyridylmethyl)-2-nitroiminoimidazolidine Analogues

  • Sung, Nack-Do (Division of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Jang, Seok-Chan (Division of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Choi, Kyoung-Seop (Division of Applied Biology & Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
  • Published : 2006.11.20

Abstract

3D-QSARs on the neuroblocking activities by 1-(6-chloro-3-pyridylmethyl)-2-nitroiminoimidazolidine analogues as agonist at the nicotinic acetylcholine receptor (nAChR) were studied quantitatively using CoMFA and CoMSIA methodologies. The statistical results of CoMFA (A5: $r^2\;_{cv.}\;=\;0.707\;&\;r^2\;_{ncv.}$= 0.986) and CoMSIA model (A3: $r^2\;_{cv.}$ = 0.715 & $r^2\;_{ncv.}$ = 0.961) showed the best predictability and fitness for neuroblocking activity based on the cross-validated value and non-cross validated value. The steric and H-bond acceptor nature of a compound were essential for high activity. The study on 3D-QSARs between substrate molecules and their neuroblocking activities appears to be an useful approach for designing better neuroblocking drug development.

Keywords

References

  1. The British Crop Protection Council, In The Pesticide Manual, 13th ed.; The Royal Society of Chemistry; Tomlin, C. D. Ed.; Hampshire, UK. 2003; p 562
  2. Hollingworth, R. M. In Agrochemical Discovery; Insect, Weed, and Fungal Control; Baker, D. R., Umetsu, N. K., Eds.; ACS Symposium Series 774; Washington DC, 2001; p 238
  3. Kagabu, S. Rev. Toxicol. 1997, 1, 75
  4. Levin, E. D.; Simon, B. B. Psychopharmacology (Berlin) 1998, 138, 217 https://doi.org/10.1007/s002130050667
  5. Simms, L. C.; Ester, A.; Wilson, M. J. Crop. Protection 2006, 25, 549 https://doi.org/10.1016/j.cropro.2005.08.011
  6. Byrne, F. J.; Toscano, N. C. Crop. Protection 2006, 25, 831 https://doi.org/10.1016/j.cropro.2005.11.004
  7. Capowiez, Y.; Berard, A. Ecotoxicol. Environ. Saf. 2006, 64, 198 https://doi.org/10.1016/j.ecoenv.2005.02.013
  8. Kim, H. J.; Shelver, W. L.; Li, Q. X. Anal. Chim. Acta 2004, 509, 111 https://doi.org/10.1016/j.aca.2003.12.006
  9. Watanabe, E.; Eun, H.; Baba, K.; Arao, T.; Ishi, Y.; Endo, S.; Ueji, M. J. Agric. Food Chem. 2004, 52, 2756 https://doi.org/10.1021/jf0498867
  10. Zhang, N.; Tomizawa, M.; Casida, J. E. Neurosci. Lett. 2004, 371, 56 https://doi.org/10.1016/j.neulet.2004.08.040
  11. Guez, D.; Belzunces, L. P.; Maleszka, R. Pharm. Biochem. Behav. 2003, 75, 217 https://doi.org/10.1016/S0091-3057(03)00070-4
  12. Jepson, J. E. C.; Brown, L. A.; Sattle, D. B. Invert. Neurosci. 2006, 6, 33 https://doi.org/10.1007/s10158-005-0013-8
  13. Ihara, M.; Brown, L. A.; Ishida, C.; Okuda, H.; Sattelle, D. B.; Matsuda, K. J. Pestic. Sci. 2006, 3, 35
  14. Kagabu, S.; Kato, C.; Nishimura, K. J. Pestic. Sci. 2004, 29, 376 https://doi.org/10.1584/jpestics.29.376
  15. Decourtye, A.; Devillers, J.; Cluzeau, S.; Charreton, M.; Pham- Delegue, M. H. Ecotoxi. Environ. Saf. 2004, 57, 410 https://doi.org/10.1016/j.ecoenv.2003.08.001
  16. Rancan, M.; Sabatini, A. G.; Achilli, G.; Galletti, G. C. Anal. Chim. Acta 2006, 555, 20 https://doi.org/10.1016/j.aca.2005.08.058
  17. Karabay, N. U.; Oguz, M. G. Gen. Mol. Res. 2005, 4, 653
  18. Matsuo, H.; Tomizawa, M.; Yamamoto, I. Arch. Insect Biochem. Physiol. 1998, 37, 17 https://doi.org/10.1002/(SICI)1520-6327(1998)37:1<17::AID-ARCH3>3.0.CO;2-S
  19. Yamamoto, I.; Tomizawa, M.; Saito, T.; Miyamoto, T.; Walcott, E. C.; Sumikawa, K. Arch. Insect. Biochem. Physiol. 1998, 37, 24 https://doi.org/10.1002/(SICI)1520-6327(1998)37:1<24::AID-ARCH4>3.0.CO;2-V
  20. Okazawa, A.; Akamatsu, M.; Ohaka, A.; Nishiwaki, H.; Cho, W. J.; Nakagawa, Y.; Nishimura, K.; Ueno, T. Pestic. Sci. 1998, 54, 134 https://doi.org/10.1002/(SICI)1096-9063(1998100)54:2<134::AID-PS786>3.0.CO;2-G
  21. Nishiwaki, H.; Nakagawa, Y.; Takeda, D. Y.; Okazawa, A.; Akamatsu, M.; Miyagawa, H.; Ueno, T.; Nishimura, K. Pest. Manag. Sci. 2000, 56, 875
  22. Kagabu, S.; Ito, N.; Imai, R.; Hieta, Y.; Nishimura, K. J. Pestic. Sci. 2005, 30, 409 https://doi.org/10.1584/jpestics.30.409
  23. Nicolotti, O.; Altomare, C.; Pellegrini-Calace, M.; Carotti, A. Curr. Topics Med. Chem. 2004, 4, 335 https://doi.org/10.2174/1568026043451384
  24. Sung, N. D.; Yu, S. J.; Kang, M. S. Agri. Chem. & Biotechnol. 1997, 40, 53
  25. Cramer, R. D.; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959 https://doi.org/10.1021/ja00226a005
  26. Cramer, R. D.; Bunce, J. D.; Patterson, D. E. Quant. Struct. Act. Relat. 1988, 7, 18 https://doi.org/10.1002/qsar.19880070105
  27. Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37, 4130 https://doi.org/10.1021/jm00050a010
  28. Kebe, G.; Abraham, U. J. Comput. Aided Mol. Des. 1999, 13, 1 https://doi.org/10.1023/A:1008047919606
  29. Folkers, G.; Merz, A.; Rognam, D. In 3D-QSAR in Drug Design: Theory, Methods and Applications; Kubinyi, H., Ed.; ESCOM Science Publishers, B. V.: 1993; p 583
  30. Nishimura, K.; Kiriyama, K.; Kagabu, S. J. Pestic. Sci. 2006, 31, 110 https://doi.org/10.1584/jpestics.31.110
  31. Sybyl Molecular Modeling and QSAR Software on CD-Rom (Ver. 7.1), Theory Manual; Tripos Inc.: St. Louis, U.S.A., 2005
  32. Purcell, W. P.; Singer, J. A. J. Chem. Eng. Data 1967, 122, 235
  33. Kerr, R. Biophys. J. 1994, 67, 1501 https://doi.org/10.1016/S0006-3495(94)80624-1
  34. Marshall, G. R.; Barry, C. D.; Bosshard, H. E.; Dammkoehler, R. A.; Dunn, D. A. In Computerassisted Drug Design: Olsen, E. C.; Christoffersen, R. E., Eds.; ACS: Washington D.C., 1979; p 205
  35. Clark, M.; Cramer III, R. D.; Jones, D. M.; Patterson, D. E.; Simerroth, P. E. Tetrahedron Comput. Methodol. 1990, 3, 47 https://doi.org/10.1016/0898-5529(90)90120-W
  36. Kellogg, G. E.; Semus, S. F.; Abraham, D. J. J. Comp.-Aided Mol. Design 1991, 5, 545 https://doi.org/10.1007/BF00135313
  37. Lindgren, F.; Geladi, P.; Rannar, S.; Wold, S. J. Chemometrics 1994, 8, 349 https://doi.org/10.1002/cem.1180080505
  38. Lindgren, F.; Geladi, P.; Berglund, A.; Sjostrom, M.; Wold, S.; Chemometrics, J. J. Chemometrics 1995, 9, 331 https://doi.org/10.1002/cem.1180090502
  39. Klebe, G. In 3D-QSAR Drug Design, Theory, Methods and Applications; Kubinyi, H., Ed.; ESCOM: Leiden, 1993; p 173
  40. Klebe, G.; Abraham, U. J. Comput. Aid. Mol. Des. 1999, 13, 1 https://doi.org/10.1023/A:1008047919606
  41. Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37, 4130 https://doi.org/10.1021/jm00050a010
  42. Sung, N. D.; Song, S. S. J. Korean Soc. Agric. Chem. Biotechnol. 2003, 46, 280
  43. Etter, M. C. Acc. Chem. Res. 1990, 23, 120 https://doi.org/10.1021/ar00172a005
  44. Taylor, B.; Kennard, O. Acc. Chem. Res. 1984, 17, 320 https://doi.org/10.1021/ar00105a004

Cited by

  1. QM and Pharmacophore based 3D-QSAR of MK886 Analogues against mPGES-1 vol.29, pp.3, 2008, https://doi.org/10.5012/bkcs.2008.29.3.647