• Title/Summary/Keyword: CoFe

Search Result 3,610, Processing Time 0.036 seconds

The influence of Co and Fe on the color change of diopside crystals (Co, Fe가 diopside 결정색 변화에 미치는 영향)

  • Byeon, Soo Min;Lee, Byung-Ha
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.183-189
    • /
    • 2014
  • This study was conducted to study the influence of Co and Fe on the color of glaze and diopside crystals in the diopside crystal glaze empirically produced and used by ceramic artists, in case of adding $Co_3O_4$ and $Fe_2O_3$. As a result, the color of glaze was blue when $Co_3O_4$ was added to the diopside crystal glaze and the diopside crystals appeared pastel violet with Co included. When $Fe_2O_3$ was added to the diopside crystal glaze, the color of glaze appeared brown and the color of diopside crystals was goldenrod with Fe included. The crystals precipitated on the surface of diopside consisted of diopside crystals and diopside precursors. With longer retention time, the amount of diopside precursors decreased and the amount of diopside crystals increased. Also, Co was more easily included by the diopside crystals than Fe was and crystallizability of dispside was improved in case of including Co. Including Fe lowered peak intensity of properties and partially dissolved the diopside crystals.

Switching Characteristics of Magnetic Tunnel Junction with Amorphous CoFeSiB Free Layer (비정질 CoFeSiB 자유층을 갖는 자기터널접합의 스위칭 특성)

  • Hwang, J.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.276-278
    • /
    • 2006
  • The switching characteristics of magnetic tunnel junctions (MTJs) comprising amorphous ferromagnetic CoFeSiB free layer have been investigated. CoFeSiB was used for the free layer to enhance the switching characteristics. The typical junction structure was $Si/SiO_{2}/Ta$ 45/Ru 9.5/IrMn 10/CoFe $7/AlO_{x}/CoFeSiB\;(t)/Ru\;60\;(in\;nm)$. CoFeSiB has low saturation magnetization ($M_{s}$) of $560\;emu/cm^{3}$ and high anisotropy constant ($K_{u}$) of $2800\;erg/cm^{3}$. These properties caused low coercivity ($H_{c}$) and high sensitivity in MTJs, and it also confirmed in submicrometer-sized elements by micromagnetic simulation based on the Landau-Lisfschitz-Gilbert equation. By increasing CoFeSiB free layer thickness, the switching characteristics became worse due to increase of the demagnetization field.

Influence of Nd Content on Magnetic Properties of Nanocrystalline $\alpha$-(Fe, Co)-Based Nd-(Fe, Co)-B-Nb-Cu Alloys ($\alpha$-(Fe, Co)기 Nd-(Fe, Co)-B-Nb-Cu 초미세결정립합금의 자기특성에 미치는 Nd의 영향)

  • 조덕호;조용수;김택기;송민석;김윤배
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.3
    • /
    • pp.154-158
    • /
    • 1999
  • Magnetic properties and microstructure of nanocrystalline $\alpha$-(Fe, Co)-based Nd-(Fe, Co)-B-Nb-Cu alloys have been investigated. $Nd_x(Fe_{0.9}Co_{0.1})_{90-x}B_6Nb_3Cu_1$(x=2, 3, 4, 5, 6) alloys prepared by rapid solidification process show amorphous phase except the one with x=2. By a proper annealing, the amorphous in the alloy is changed to a nanocrystalline phase. It is confirmed that the nanocrystalline alloys are composed of $\alpha$-(Fe, Co) and $Nd_2(Fe, Co)_{14}B_1$ phase. The optimally annealed $Nd_3(Fe_{0.9}Co_{0.1})_87B_6Nb_3Cu_1$ alloy shows the highest remanence of 1.55 T. The coercivity increases with the increase of Nd content The maximum coercivity of 4.6 kOe is obtained from an optimally annealed $Nd_6(Fe_{0.9}Co_{0.1})_84B_6Nb_3Cu_1$ alloy, resulting in the maximum energy product of 10.6 MGOe.

  • PDF

Effect of Co-Substitution on the Crystallization and Magnetic Properties of a Mechanically Milled Nd15(Fe1-xCox)77B8 (x=0-0.6) Alloy

  • Kwon, H.W.;Yang, C.J.
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.143-146
    • /
    • 2002
  • Mechanical milling technique is considered to be a useful way of processing the fine Nd-Fe-B-type powder with high coercivity. In the present study, phase evolution of the $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ (x=0-0.6) alloys during the high energy mechanical milling and annealing was investigated. The effect of Co-substitution on the crystallization of the mechanically milled $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ amorphous material was examined. The Nd-Fe-B-type alloys can be amorphized completely by a high-energy mechanical milling. On annealing of the amorphous material, fine $\alpha$-Fe crystallites form first from the amorphous. These fine $\alpha$-Fe crystallites reacts with the remaining amorphous afterwards, leading to crystallization to $Nd_2Fe_{14}$B phase. The Co-substitution for Fe in $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ ($\mu$x=0∼0.6) alloys lower significantly the crystallization temperature of the amorphous phase to the $Nd_2Fe_{14}$B phase. The mechanically milled and annealed $Nd_{15}Fe_{77}B_8$ alloy without Co-substitution exhibits consistently better magnetic properties with respect to the alloys with Co-substitution.

A Study on the Fabrication of Fe-Co Magnetic Fluid from the Waste Pickling Liquor of Steel

  • Kim, Young-Sam;Lee, Jong-Heon
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.149-153
    • /
    • 2001
  • This paper describes on the fabrication of Fe-Co hydrophilic magnetic fluids from the waste pickling liquor of steel. By adding with HNO$_3$in the waste liquor oxidation is proceeded from Fe$^{3+}$ion at 6$0^{\circ}C$ with air blowing. Ultra-fine Co-ferrite particles with the mean particle size of 50 $\AA$ were produced at pH 12 after adjusting the ratio of Fe$^{3+}$Co$^{2+}$=7/3(wt%) and Fe-Co particles with the mean particle size of 94 $\AA$ were produced by reducing the Co-ferrite particle with H$_2$at the temperature of 50$0^{\circ}C$. After triple adsorption of oleic acid dodecyl benzene sulfonate(D.B.S.) and tetra methyl ammonium(T.M.A.) ions on the surface of Fe-Co particles Fe-Co hydrophilic magnetic fluid was produced by dispersing the Fe-Co particles in ethylene glycol solution. The magnetization of the Fe-Co hydrophilic magnetic fluid increased with increasing the Fe-Co concentration. The magnetic fluid containing 70% (g/cc) Fe-Co showed 73 emu/g in magnetization at the magnetic intensity of 10 kOe.kOe.e.

  • PDF

Annealing Effect on Exchange Bias in NiFe/FeMn/CoFe Trilayer Thin Films

  • Kim, Ki-Yeon;Choi, Hyeok-Cheol;You, Chun-Yeol;Lee, Jeong-Soo
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.97-101
    • /
    • 2008
  • We investigated the exchange bias fields at the NiFe/FeMn and FeMn/CoFe interfaces in 18.9-nm NiFe/15.0-nm FeMn/17.6-nm CoFe trilayer thin films as the annealing temperature was varied from room temperature to $250^{\circ}C$ in a vacuum for 1 hour in a magnetic field of 150 Oe. Interestingly, magnetic hysteresis (M-H) measurements showed that NiFe/FeMn/CoFe trilayer thin films exhibited a completely contrasting variation of the exchange bias fields at both the NiFe/FeMn and FeMn/CoFe interfaces with annealing temperatures. High-angle X-ray diffraction (XRD) measurements indicated the absence of any discernible effect of thermal treatment on the NiFe(111) and FeMn(111) peaks. The compositional depth profile obtained from X-ray photoelectron spectroscopy (XPS) results presented the asymmetric compositional depth profiles of the Mn and Fe atoms throughout the FeMn layer. We contend that this asymmetric compositional depth profile and the preferential Mn diffusion into the NiFe layer, compared to that into the CoFe layer, are conclusive experimental evidence of the contrasting variation of the exchange bias fields at two interfaces having a common polycrystalline FeMn(111) layer.