• Title/Summary/Keyword: CoDisplay

Search Result 1,332, Processing Time 0.036 seconds

Characteristics of Carbon Nanotube FED

  • Uemura, Sashiro;Yotani, Junko;Nagasako, Takeshi;Kurachi, Hiroyuki;Yamada, Hiromu;Ezaki, Tomotaka;Maesoba, Tsuyoshi;Nakao, Takehiro;Ito, Masaaki;Saito, Yahachi;Yumura, Motoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.860-865
    • /
    • 2004
  • Field emission display(FED) using carbon nanotubes (CNT) as field emitters is expected to large-area panels with high luminance and low power consumption. In order to perform the uniform luminance with low driving voltage, we introduced a new electrode to apply higher electric potential over the CNT cathode in 2003.[1] In the study, we described the luminance uniformity of the panel and the improvement of emission uniformity by increasing the emission-site density. The luminance uniformity of the several ideal dots which were selected over the display area in the panel was 2.8%. [2] The CNT cathode was irradiated by excimer-laser, which was effective to improve emission uniformity and lower driving voltage. A prototype of CNT-FED character display was performed for middle size message displays. The prototype panel had 48 x 480-dots and the resolution was 1-mm. The panel realized high luminance at low power consumption. It will be important characteristics for legible and ubiquitous displays. [3]

  • PDF

High Efficiency AMOLED Using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.163-166
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages, such as high-resolution patterning with over-all position accuracy of the imaged stripes within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished using real-time error correction and a high -resolution stage control system that includes laser interferometers. Here the new concept of mixed hybrid system which complement the advantages of small molecular and polymeric materials for use as an OLED; our system can realize the easy processing of polymers and high luminance efficiency of recently developed small molecules. LITI process enables to pattern the stripes with excellent thickness uniformity and multi-stacking of various functional layers without using any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure of small molecular/polymeric species.

  • PDF

Novel RGB Polymer Dispersed Liquid Crystal Display using Color Pigments.

  • Shim, S.H.;Choi, S.Y.;Baek, D.H.;Kim, W.;Choi, S.E.;Son, G.;Suh, D.H.;Choia, J.W.;Lee, J.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.784-787
    • /
    • 2006
  • We have developed a RGB polymer dispersed liquid crystal film (RGB PDLC). To obtain the color display, color pigments are mixed in the prepolymer. We have presented an electro-optical performance of our cell and analyzed the electro optical properties for varying LC/ pre-polymer ratio and polymer type.

  • PDF

Development of Novel Electrode Materials for Plasma Display Panel

  • Kim, Chul-Hong;Chae, So-Ra;Lee, Min-Hee;Jeong, Hyun-Mi;Kim, Beom-Kwon;Heo, Eun-Gi;Choe, Deok-Hyeon;Lee, Byung-Hak
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1437-1440
    • /
    • 2008
  • In this paper, we mainly deal with metallic electrode materials and patterning processing of plasma display panels. We focus on the recent development status, where low cost and high performance electrode materials such as Ag-based single-layered bus, low cost-in-use and anti-migration address electrodes are briefly introduced. The technological trends and further works on novel electrode materials and processing are also discussed.

  • PDF

High Performance 2.2 inch Full-Color AMOLED Display for Mobile Phone

  • Kim, H.K.;Suh, M.S.;Lee, K.S.;Eum, G.M.;Chung, J.T.;Oh, C.Y.;Kim, B.H.;Chung, H.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.325-328
    • /
    • 2002
  • We developed a high performance 2.2" active matrix OLED display for IMT-2000 mobile phone. Scan and Data driver circuits were integrated on the glass substrate, using low temperature poly-Si(LTPS) TFT CMOS technology. High efficiency EL materials were employed to the panel for low power consumption. Peak luminescence of the panel was higher than 250cd/$m^2$ with power consumption of 200mW.

  • PDF

Parametric Study for Excimer Laser-induced Crystallization in the a-Si thin film

  • Moon, Min-Hyung;Kim, Hyun-Jae;Choi, Kwang-Soo;Souk, Jun-Hyung;Seo, Chang-Ki;Kim, Do-Young;Dhungel, Suresh Kumar;Yi, Junsin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.630-633
    • /
    • 2003
  • Integrating the driver circuitry directly onto the glass substrate would be one of the advantages of polycrystalline Si (poly-Si) TFT-(LCD). Low-temperature poly-Si TFT(LTPS) is well-suited for higher-definition display applications due to its intrinsically superior electrical characteristics. In order to improve LTPS electrical characteristics, currently the excimer laser-induced crystallization (ELC) processes and sequential lateral solidification method were developed. Grain size of the poly-Si is mainly affected by beam pitch and energy density. Key parameter for making a larger poly-Si using excimer laser annealing(ELA) and increasing a throughput is due to increase in beam pitch and energy density to a certain degree. Furthermore, thin $SiO_{2}$ capping is effective to suppress the protrusion of the poly-Si thin films and to reduce the interface state density. From the ELA process, we are able to control grain size by varying different parameters such as number of shots and energy density.

  • PDF

New Method of Gas Barrier Coating on Plastic Substrate for Flexible Display

  • Hwang, Hee-Nam;Choi, Jae-Moon;Kim, In-Sun;Park, Jong-Rak
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.985-987
    • /
    • 2004
  • A plastic substrate for flexible display is developed. The gas barrier property in the substrate is improved through depositing metal and metal oxide multi layer on plastic film by PVD process. The metal/metal-oxide multiplayer on plastic film shows excellent gas barrier property and optical property.

  • PDF

Full Size PDP Development with SDR Structure for Improved Luminance and Low Power Consumption

  • Yoo, Min-Sun;Yoon, Cha-Keun;Lee, Kwang-Sik;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.53-56
    • /
    • 2002
  • Samsung's newly developed high luminance efficiency 42" VGA plasma display panel is introduced. A new discharge cell structure, SDR (Segmented electrode in Delta color arrayed Rectangular subpixel) has been applied to a full size panel for the first time. In this paper, we describe how this new discharge cell structure for high efficiency is integrated to an energy saving plasma display with better picture quality.

  • PDF

Study on the Touch Screen Panel Based on the Light over Electro Phoretic Display

  • Choi, Uk-Chul;Jung, Ho-Young;Park, Cheol-Woo;Hong, Sung-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.706-709
    • /
    • 2007
  • Different from the LCD that have two glass substrates on the top and the bottom, EPD have an advantage that is using the bottom glass substrate and the top e-ink sheet. So, it is impossible to apply R or C type TSP that need bottom and top glass plane. We successfully implemented the TSP (Touch Screen Panel) based on the light over the EPD (Electro Phoretic Display).

  • PDF

Implementation of Inductive Wireless Power Transfer System based on LLC Converter without Wireless Communication between Tx and Rx (Tx-Rx간 무선통신이 필요 없는 LLC 컨버터 기반 유도형 무선전력전송 시스템 구현)

  • Kim, Moon-Young;Choi, Shin-Wook;Kang, Jeong-il;Han, Jonghee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.311-318
    • /
    • 2019
  • In general wireless power transfer systems (WPTSs), power transfer is controlled by the wireless communication between a transmitter (Tx) and a receiver (Rx). However, WPTS is difficult to apply in electronic products that do not have batteries, such as TVs. A WPTS with resonators based on a transformer of LLC series resonant converter is proposed in this study to eliminate wireless communication units between a Tx and an Rx. The proposed system operates at the boundary of the resonance frequency, and the required power can be stably supplied to authorized devices even though some misalignment occurs. Moreover, standby power standards for the electronic product can be satisfied.