• Title/Summary/Keyword: CoCrMo 합금

Search Result 51, Processing Time 0.023 seconds

Anodic Polarization Properties of Ti-Zr-Pd Based Alloys for Biomedical Applications (생체용 Ti-Zr-Pd계 합금의 양극분극특성)

  • Jung, Jong-Hyun
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.21-30
    • /
    • 2001
  • For biomedical applications. Ti-X%Zr-Y%Pd(X: $10{\sim}20$, Y:0.2 or 0.4) based alloys not containing harmful Al and V were newly designed, and polarization curves for their alloys were measured at $37^{\circ}C$ in 5% HCl solution in order to understand effects of Zr on the corrosion. From the results of anodic polarization behavior, it was found that the corrosion resistance increased with increasing Zr content. The results show their potential to develope Ti-based alloys for biomedical materials. The Ti-20%Zr-0.2%Pd alloy shows excellent corrosion resistance and was superior to those of the Ti. Ti-6%Al-4%V ELI alloy, Co-30%Cr-6%Mo alloy and STS 316L stainless steel.

  • PDF

High-Temperature Tensile Strengths of Alloy 617 Diffusion Weldment (Alloy 617 확산용접재의 고온 인장강도)

  • Sah, Injin;Hwang, Jong-Bae;Kim, Eung-Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.15-23
    • /
    • 2018
  • A compact heat exchanger is one of critical components in a very high temperature gas-cooled reactor (VHTR). Alloy 617 (Ni-Cr-Co-Mo) is considered as one of leading candidates for this application due to its excellent thermal stability and strengths in anticipated operating conditions. On the basis of current ASME code requirements, sixty sheets of this alloy are prepared for diffusion welding, which is the key technology to have a reliable compact heat exchanger. Optical microscopic analysis show that there are no cracks, incomplete bond, and porosity at/near the interface of diffusion weldment, but Cr-rich carbides and Al-rich oxides are identified through high resolution electron microscopic analysis. In high-temperature tensile testing, superior yield strengths of the diffusion weldment compared to the code requirement are obtained up to 1223 K ($950^{\circ}C$). However, both tensile strength and ductility drop rapidly at higher temperature due to the insufficient grain boundary migration across the interface of diffusion weldment. Best fit curves for minimum yield strength and average tensile strength are drawn from the experimental tensile results of this study.

The Effects of Thermal Degradation and Creep Damage on the Microstructure and Composition of the Carbides in the CrMo Steels for Power Plant (발전 설비용 CrMo강의 탄화물 구조와 조성 변화에 미치는 열화 및 크리프 손상의 영향)

  • Ju, Yeon-Jun;Hong, Gyeong-Tae;Lee, Hyeon-Ung;Sin, Dong-Hyeok;Kim, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.1018-1024
    • /
    • 1999
  • The effects of operating temperature and stress on degradation of components in high temperature steam generator were investigated. Several 2.25CrlMo tubes which had operated over 20 years and an unused 9CrlMoVNb tube were tested. For the former samples, the amount of $\textrm{M}_{6}\textrm{C}$ carbide and its size are increased with the aging or operating time. The precipitation behavior of carbides ($\textrm{M}_{2}\textrm{O}$, $\textrm{M}_{6}\textrm{C}$) is changed with the operating temperature of the tubes. However, unused 9CrlMoVNb samples show a different carbide precipitation process due to high chromium, vanadium, and niobium contents. The amount of Cr-rich $\textrm{M}_{23}\textrm{C}_{6}$ carbide is significantly increased with aging time, but that of $\textrm{M}_{6}\textrm{C}$ type carbide is rarely changed with aging time at elevated temperatures.

  • PDF

EFFECTS OF METAL SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH BETWEEN NI-CR DENTURE BASE AND RELINE RESINS (금속 표면처리방법이 니켈-크롬 합금 의치상과 첨상레진간의 결합강도에 미치는 영향)

  • Kim Young-Il;Jeong Chang-Mo;Jeon Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.4
    • /
    • pp.396-405
    • /
    • 2002
  • The purpose of this study was to evaluate the effects of four metal surface treatments on the shear bond strength of reline resin to Ni-Cr alloy. The denture base metal used in this study was Ni-Cr alloy(Ticonium Premium 100. Ticonium Co., U.S.A.). 120 specimens were divided into five metal surface treatments: sandblasting only, MR. BOND(Tokuyama Corp.. Japan), Cesead Opaque Primer(Kuraray Co., Japan), METALPRIMER II(GC Corp., Japan) and Super-Bond C&B(Sun Medical Co., Japan) after sandblasting. They were bonded with one of three reline resins Mild Rebaron(GC Corp., Japan), Mild Rebaron LC(GC Corp., Japan) and Meta Base M(Sun Medical Co., Japan). Then they were thermocycled 1,000 times at temperature of $4^{\circ}C$ and $60^{\circ}C$. The shear bond strengths were measured using the universal testing machine(Instron, Model 4301, England) with a cross-head speed of 2 mm/min. The results were as follows : 1. All metal primers and adhesive cement significantly improved the bond strength of reline resin to Ni-Cr alloy compared with sandblasted specimens. 2. In Mild Rebaron and Mild Rebaron LC. Cesead Opaque Primer showed the highest bond strength, but the differences among Cesead Opaque Primer, MR. BOND and METALPRIMER II were not significant. The bond strength of Cesead Opaque Primer was significantly different with that of Super-Bond C&B. 3. In Meta Base M, Super-Bond C&B showed the highest bond strength, but there was no difference between Super-Bond C&B and three metal primers. 4. There was no difference in the bond strength between Mild Rebaron and Mild Rebaron LC when metal surface was treated with the same method. 5. The bond strengths of Mild Rebaron and Mild Rebaron LC treated with Cesead Opaque Primer were higher than that of Meta Base M. The bond strengths of Mild Rebaron treated with MR. BOND and METALPRIMER II was higher than that of Meta Base M, However, there was no difference among three reline resins treated with Super-Bond C&B.

Thermal Stability of $\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) Amorphous Alloys ($\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) 비정질합금의 열적안정성)

  • Guk, Jin-Seon;Jeon, U-Yong;Jin, Yeong-Cheol;Kim, Sang-Hyeop
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.218-223
    • /
    • 1997
  • At the aim of finding a Fehased amorphous alloy with a wide supercooled liquid region (${\Delta}T_{x}=T_{x}-T_{g}$) before crystallization, the changes in glass transition temperatudfI$T_{g}$ and crystallization temperature ($T_{x}$) by the dissolution of additional M elements were examined for the $Fe_{80}P_{10}C_{6}B_{4}$(x~6at%. M= transition metals) amorphous alloys. The ${\Delta}T_{x}$ value is 27K for the Fe,,,P,,,C,,R, alloy and increases to 40K for the addition of M=4at%Hf, 4at%Ta or 4at%Mo. The increase in ${\Delta}T_{x}$ is due to the increase of $T_{x}$ exceeding the degree in the increase in $T_{g}$. The $T_{g}$ and $T_{x}$ increase with decreasing electron concentration (e/a) from about 7 38 to 7.05. The decrease of e/a also implies the increase in the attractive bonding state between the M elements and other constitutent elements. It is therefore said that $T_{g}$ and $T_{x}$ increase kith increasing attractive bonding force.

  • PDF

Effects on the Joining Condition of TiAl Alloy and SCM440 by Servo Motor Type Friction Welding (서보모터방식 마찰용접을 이용한 TiAl 합금과 SCM440의 접합에 미치는 용접조건의 영향)

  • Park, Jong-Moon;Kim, Ki-Young;Kim, Kyoung-Kyun;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.2
    • /
    • pp.66-74
    • /
    • 2016
  • In this study, characteristics of TiAl alloy and SCM440 (Cr-Mo steel) have been investigated with the various joining condition by servo motor type friction welder. The experimental factors of friction welder used in this study are spindle revolution, friction speed, and distance, upset speed and distance, respectively. Servo motor type friction welder could be controlled by the level of oil pressure, and it could be performed by position control dependence of electrical energy. Mechanical properties and morphology of welded interface were characterized by various joining condition. This aroused due to the bond strength dependence on friction heat and size of the heat affected zone. Therefore, it is necessary to have enough friction heat and decreased heat affected zone for good friction welding between dissimilar metals. An optimum bond was obtained between TiAl alloy and SCM440 by controlling friction speed and distance. At the spindle revolution 4,000 rpm, friction speed 120 mm/min, friction distance 15 mm, the bond strength was found to be 312 MPa.

Fabrication and Tensile Properties of Alloy 617 base ODS Alloy (Alloy 617계 산화물 분산강화(ODS) 합금의 제조와 인장특성)

  • Min, Hyoung-Kee;Kang, Suk-Hoon;Kim, Tae-Kyu;Han, Chang-Hee;Kim, Do-Hyang;Jang, Jin-Sung
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.482-487
    • /
    • 2011
  • Alloy 617, Ni-22Cr-12Co-9Mo base oxide dispersion strengthened alloy was fabricated by using mechanical alloying, hot isostatic pressing and hot rolling. Uniaxial tensile tests were performed at room temperature and at $700^{\circ}C$. Compared with the conventional Alloy 617, ODS alloy showed much higher yield strength and tensile strength, but lower elongation. Fracture surfaces of the tensile tested specimens were investigated in order to find out the mechanism of fracture mode at each test temperature. Grain adjustment during tensile deformation was analyzed by electron backscattered diffraction mapping, inverse pole figures and TEM observation.

EFFECTS OF ELECTROLYTE CONCENTRATION AND ETCHING TIME ON SURFACE ROUGHNESS OF NI-CR-BE ALLOY (전해질 농도와 식각시간에 따른 비귀금속합금의 표면조도 변화)

  • Heo, Jae-Woong;Jeon, Young-Chan;Jeong, Chang-Mo;Lim, Chang-Sub
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.178-190
    • /
    • 2000
  • The purpose of this study was to evaluate the surface roughness of Ni-Cr-Be alloy($Verabond^{(R)}$, Aalba Dent Inc., USA) according to electrolyte concentration and etching time. Total of 150 metal specimens ($12{\times}10{\times}1.5mm$) composed of 5 polisded specimens, 5 sandblasted specimens, 140 etched specimens were prepared. Etched groups were divided into 28 groups by the $HClO_4$ concentrations(10, 30, 50, 70%) and etching times(15, 30, 60, 120, 180, 240, 300 seconds). The mean surface roughness(Ra) and the etching depth were measured with Optical 3-dimensional surface roughness measuring machine(Accura 1500M, Intek Engineering Co., Korea) and observed under SEM. The results obtaind were as follows: 1. Surface roughness(Ra) and etching depth were affected by the order of etching time, electrolyte concentration, and their interaction(P<0.05). 2. Surface roughness(Ra) and etching depth were increased with etching time in 10%, 30% electrolyte concentrations, but they had no significant difference with etching time in 70% (P<0.05). 3. Surface roughness(Ra) and etching depth decreased in the order of 30, 10, 50, 70% electrolyte concentrations from 120 seconds etching time(P<0.05). 4. The remarkable morphologic changes in etched surface were observed along the grain boundaries in 15, 30 seconds of 10%, 30% concentrations and the morphologic changes could be denoted in the grains themselves as well as along the boundaries with the lapse of time. Even though the noticeable morphologic changes also took place in etched surface with 50% concentration, the degree of changes were less than that of changes with 10%, 30%. However, there were little morphologic changes with 70% concentration regardless of etching time. 5. Surface roughness(Ra) of sandblasting group with $50{\mu}m\;Al_2O_3$ had no significant difference with 30%-30 seconds etched group(P<0.05).

  • PDF

Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment (Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향)

  • Kim, Dong Woo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.

Effect of Tungsten Contents and Heat Treatment on the Microstructures and Mechanical Properties of Hastelloy C-276 Alloy Investment Castings (정밀주조 Hastelloy C-276 합금의 미세조직과 기계적 성질에 미치는 W 함량과 열처리의 영향)

  • Yoo, Byung-Ki;Park, Heung-Il;Bae, Cha-Hurn;Kim, Sung-Gyoo;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.37 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • The effects of W content and heat treatment on the microstructure and mechanical properties of Hastelloy C-276 alloy investment castings were discussed. As the W content was increased, dendritic microstructure was refined and network type precipitate formed during solidification was distributed on the dendritic grain boundaries. Cr, Fe and Mn were highly segregated in the Ni-based dendrite matrix, and Mo, W, C and Si were in the precipitates. Due to the heat treatment, fine granular and flake precipitates were newly formed in the matrix, and unresolved network type precipitates remained on the grain boundary. The network type precipitates and the granular and flake precipitates formed by heat treatment were confirmed to be ${\mu}$ phase intermetallic compounds with similar compositions. Due to the increase of the W content and the heat treatment, hardness and tensile strength were significantly increased. However, tensile strength after aging treatment was decreased with the W content. These results can be explained in that brittle fracturing by the unresolved network type precipitates dispersed in the grain boundary was predominant over ductile fracturing by the dimple ruptures originating from the fine granular precipitates in the matrix.