컴퓨터의 보급에 따라 비정형 대용량 데이터가 범람하고 이를 효율적으로 처리하기 노력이 요구되고 있다. 이에 본 논문에서는 오피스(office) 파일(아래한글, MS-Office 등)에 입력된 데이터를 바로 XML로 변환하고, 사용자가 XML 매핑 파일을 만들어서 워드프로세서에 입력 된 데이터를 바로 추출하여 데이터베이스에 저장하는 시스템을 제안하였다. 또한, 본 시스템은 워드프로세스에 양식을 미리 작성하여 필요한 데이터를 데이터베이스에서 조회하여 워드프로세서 문서를 응용프로그램에서 오피스 파일을 생성 할 수 있다. 이는 대용량의 비정형 데이터를 활용가능하게 할 것이다.
Text mining techniques provide valuable insights into research information across various fields. In this study, text mining was used to identify research trends in wood science from 2012 to 2022, with a focus on representative journals published in Korea and Japan. Abstracts from Journal of the Korean Wood Science and Technology (JKWST, 785 articles) and Journal of Wood Science (JWS, 812 articles) obtained from the SCOPUS database were analyzed in terms of the word frequency (specifically, term frequency-inverse document frequency) and co-occurrence network analysis. Both journals showed a significant occurrence of words related to the physical and mechanical properties of wood. Furthermore, words related to wood species native to each country and their respective timber industries frequently appeared in both journals. CLT was a common keyword in engineering wood materials in Korea and Japan. In addition, the keywords "MDF," "MUF," and "GFRP" were ranked in the top 50 in Korea. Research on wood anatomy was inferred to be more active in Japan than in Korea. Co-occurrence network analysis showed that words related to the physical and structural characteristics of wood were organically related to wood materials.
한국어 연속 음성에서 발생하는 조음결합문제를 해결하기 위하여 단어를 기본 인식 단위로 사용할 경우 각 단어의 효율적인 표현 방법, 연속된 단어로 이루어진 여러 문장의 표현 방법 그리고 입력된 연속음성을 연속된 여러 단어로의 정합 방법에 관한 연구가 선행되어야 한다. 본 논문에서는 은닉 마르코프 모델과 레벨빌딩 알고리즘을 이용한 한국어 연속 음성 인식 시스템을 제안한다. 각 단어는 은닉 마르코프 모델로 표현하고 문장을 표현하기 위하여 단어 모델을 연결한 형태인 인식 네트워크를 구성한다. 인식네트워크의 탐색 알고리즘으로는 레벨 빌딩 알고리즘을 사용한다. 제안한 방법은 항공기 예약 시스템에 적용한 실험에서 인식율과 인식속도면에서 실용적이었으며 또한 비교적 적은 저장공간으로 전체 문장을 표현하고 쉽게 확장할 수 있다는 장점을 가지고 있다.
Purpose -International diplomacy is key for the cohesive economic growth of countries around the world. This study aims to identify the major topics discussed and make sense of word pairs used in sentences by Chinese senior leaders during their diplomatic visits. It also compares the differences between key topics addressed during diplomatic visits to developed and developing countries. Design/methodology - We employed three methods: word frequency, co-word, and semantic network analysis. Text data are crawling state and official visit news released by the Ministry of Foreign Affairs of the People's Republic of China regarding diplomatic visits undertaken from 2015-2019. Findings - The results show economic and diplomatic relations most prominently during state and official visits. The discussion topics were classified according to nine centrality keywords most central to the structure and had the maximum influence in China. Moreover, the results showed that China's diplomatic issues and strategies differ between developed and developing countries. The topics mentioned in developing countries were more diverse. Originality/value - Our study proposes an effective approach to identify key topics in Chinese diplomatic talks with other countries. Moreover, it shows that discussion topics differ for developed and developing countries. The findings of this research can help researchers conduct empirical studies on diplomacy relationships and extend our method to other countries. Additionally, it can significantly help key policymakers gain insights into negotiations and establish a good diplomatic relationship with China.
혐오는 타인에 대한 배타성이 집단적으로 표출된 것으로, 잘못된 대중적 인식을 통하여 양산되고 재생산된다. 이 연구는 우리사회에서 언급되고 있는 '혐오' 양상을 거시적으로 탐색하고자 1990년부터 2020년까지 발행된 뉴스데이터 17,867건을 대상으로 텍스트마이닝 기법을 활용하여 키워드 네트워크와 군집 분석을 수행하였다. 그리고 단어를 추출하기 전에 먼저 기사를 문장으로 분리하는 전처리 과정을 거쳐 '혐오', '편견', '차별'이라는 단어를 포함하고 있는 문장 총 52,520개를 추출하여 분석에 활용함으로써 '혐오'라는 단어와 인접한 단어들로 구성된 키워드 네트워크를 구축하였다. 수집한 뉴스데이터의 단어 동시출현빈도 분석 결과, 우리 사회에서 혐오와 관련되어 가장 빈번하게 등장하는 대상은 여성, 인종, 성소수자 등이며, 관련된 이슈는 이들 집단과 관련된 법과 범죄 등이었다. 키워드 네트워크 군집 분석 결과, 성별(41.4%), 소수자(28.7%), 인종·민족(15.1%), 선택적·이해관계적(8.5%), 정치·이념(5.7%), 환경·생존적(0.3%) 혐오 등 총 6개의 혐오 군집들이 발견되었다. 논의에서는 군집 분석 결과 구체적으로 드러나지 않은 혐오의 표적(대상)을 모두 추출하여 분석하였다.
Ni$_{66}$Fe$_{16}$$Co_{18}$ /Cu/Co 삼층막을 4 .deg. tilt-cut Si(111) 기판과 Cu(50 .angs. ) 바닥층 위에 형성하고, 사진식각 및 에칭 작업을 통해 자기저항 메모리 소자를 제작하여 자기저항 메모리 특성을 연구하였다. 외부 자장의 인가 없이 증착한 NiFeCo/Cu/Co 삼층막은 4 .deg. tilt-cut Si(111) 기판과 Cu(50 .angs. ) 바닥층의 영향으로 면내 일축자기이방성을 형성하였으며, 낮은 자장 내에서 높은 자기저항비와 자기저항민감도 등 자기저항 메모리 소자에 응용이 가능한 우수한 자기저항 특성을 나타내었다. NiFeCo/Cu/Co 삼층막의 Cu 사잇층 두께 변화에 따라 삼층막을 이루는 두 자성층 간에 강자성 및 반강자성 결합력이 관찰되었으며, 결합력은 사잇층 두께에 민감하게 변화하여 NiFeCo/Cu/Co 삼층막의 메모리 특성에 영향을 끼쳤다. 사잇층 두께의 변화에 대해 최적화된 [NiFeCo(60 .angs. )/Cu(25 .angs. )/Co(30 .angs. )]/Cu(50 .angs. )/Si(111, 4 .deg. tilt-cut) 스핀밸브 삼층막을 이용하여 거시적 자기저항 메모리 소자를 제작하고, 시험 소자의 메모리 동작에 대해 관찰하였다. Sense 전류는 10 mA로 고정하고, 약 5 * $10^{5}$ A/$cm^{2}$의 word 전류를 가해 약 10 mV의 출력 전압을 시험 소자에서 얻었으며, NiFeCo/Cu/Co 스핀밸브 삼층막의 자기저항 메모리 소자에의 응용 가능성을 확인할 수 있었다.다.
텍스트 데이터가 특정 범주에 속하는지 판별하는 문장 분류에서, 문장의 특징을 어떻게 표현하고 어떤 특징을 선택할 것인가는 분류기의 성능에 많은 영향을 미친다. 특징 선택의 목적은 차원을 축소하여도 데이터를 잘 설명할 수 있는 방안을 찾아내는 것이다. 다양한 방법이 제시되어 왔으며 Fisher Score나 정보 이득(Information Gain) 알고리즘 등을 통해 특징을 선택 하거나 문맥의 의미와 통사론적 정보를 가지는 Word2Vec 모델로 학습된 단어들을 벡터로 표현하여 차원을 축소하는 방안이 활발하게 연구되었다. 사전에 정의된 단어의 긍정 및 부정 점수에 따라 단어의 임베딩을 수정하는 방법 또한 시도하였다. 본 연구는 문장 분류 문제에 대해 선택적 단어 제거를 수행하고 임베딩을 적용하여 문장 분류 정확도를 향상시키는 방안을 제안한다. 텍스트 데이터에서 정보 이득 값이 낮은 단어들을 제거하고 단어 임베딩을 적용하는 방식과, 정보이득 값이 낮은 단어와 코사인 유사도가 높은 주변 단어를 추가로 선택하여 텍스트 데이터에서 제거하고 단어 임베딩을 재구성하는 방식이다. 본 연구에서 제안하는 방안을 수행함에 있어 데이터는 Amazon.com의 'Kindle' 제품에 대한 고객리뷰, IMDB의 영화리뷰, Yelp의 사용자 리뷰를 사용하였다. Amazon.com의 리뷰 데이터는 유용한 득표수가 5개 이상을 만족하고, 전체 득표 중 유용한 득표의 비율이 70% 이상인 리뷰에 대해 유용한 리뷰라고 판단하였다. Yelp의 경우는 유용한 득표수가 5개 이상인 리뷰 약 75만개 중 10만개를 무작위 추출하였다. 학습에 사용한 딥러닝 모델은 CNN, Attention-Based Bidirectional LSTM을 사용하였고, 단어 임베딩은 Word2Vec과 GloVe를 사용하였다. 단어 제거를 수행하지 않고 Word2Vec 및 GloVe 임베딩을 적용한 경우와 본 연구에서 제안하는 선택적으로 단어 제거를 수행하고 Word2Vec 임베딩을 적용한 경우를 비교하여 통계적 유의성을 검정하였다.
최근 소셜 미디어의 사용이 폭발적으로 증가함에 따라 이용자가 직접 생성하는 방대한 데이터를 분석하기 위한 다양한 텍스트 마이닝(text mining) 기법들에 대한 연구가 활발히 이루어지고 있다. 이에 따라 텍스트 분석을 위한 알고리듬(algorithm)의 정확도와 수준 역시 높아지고 있으나, 특히 감성 분석(sentimental analysis)의 영역에서 언어의 문법적 요소만을 적용하는데 그쳐 화용론적 의미론적 요소를 고려하지 못한다는 한계를 지닌다. 본 연구는 이러한 한계를 보완하기 위해 기존의 알고리듬 보다 의미 자질을 폭 넓게 고려할 수 있는 Word2Vec 기법을 적용하였다. 또한 한국어 품사 중 형용사를 감정을 표현하는 '감정어휘'로 분류하고, Word2Vec 모델을 통해 추출된 감정어휘의 연관어 중 명사를 해당 감정을 유발하는 요인이라고 정의하여 이 전체 과정을 'Emotion Trigger'라 명명하였다. 본 연구는 사례 연구(case study)로 사회적 이슈가 된 세 직업군(교수, 검사, 의사)의 특정 사건들을 연구 대상으로 선정하고, 이 사건들에 대한 대중들의 인식에 대해 분석하고자 한다. 특정 사건들에 대한 일반 여론과 직접적으로 표출된 개인 의견 모두를 고려하기 위하여 뉴스(news), 블로그(blog), 트위터(twitter)를 데이터 수집 대상으로 선정하였고, 수집된 데이터는 유의미한 연구 결과를 보여줄 수 있을 정도로 그 규모가 크며, 추후 다양한 연구가 가능한 시계열(time series) 데이터이다. 본 연구의 의의는 키워드(keyword)간의 관계를 밝힘에 있어, 기존 감성 분석의 한계를 극복하기 위해 Word2Vec 기법을 적용하여 의미론적 요소를 결합했다는 점이다. 그 과정에서 감정을 유발하는 Emotion Trigger를 찾아낼 수 있었으며, 이는 사회적 이슈에 대한 일반 대중의 반응을 파악하고, 그 원인을 찾아 사회적 문제를 해결하는데 도움이 될 수 있을 것이다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권9호
/
pp.3680-3692
/
2020
The purpose of this study is to orient users' touchpoints in co-design experience, to identify their need via visualized experience map, to recommend valid design information in online e-customization services. A user-centered co-design experience map (UCEM) is adopted to analyze the relation between users' desire and time spent, so as to evaluate the online co-design experiences. Based on evolutionary algorithm and fuzzy theory, data of this study is collected from 30 participants. The data was analyzed by descriptive analysis in SPSS, and frequency query and word cloud in NVivo. Employing design category and evaluating users' time spent, the findings are that (a) vamp color matching is consistent with interview data; (b) supported by qualitative feedback, the virtual experience map played an important role in the co-design process and the visualized interaction process; and (c) participants prefer to get more information and professional help on color matching and exterior design. Based on the findings in design category, future work should be focused on developing a better understanding of design resource recommendations and multi-stakeholder communication.
정보 검색에서 원하는 정보를 얻지 못하는 원인은 다양하다. 그 중에서도 표기의 다양성은 검색 시 불일치로 인한 정보 누락을 발생시키는 원인이 된다. 본 논문은 이러한 불일치에 의한 정보 누락을 최소화하기 위하여 검색 대체어 후보를 자동 생성하는 방법을 제안한다. 본 연구에서 제안하는 대체어 후보 자동 생성 방법은 문장 내에서 함께 쓰이는 단어들이 비슷한 두 단어는 서로 비슷한 의미를 지닐 것이다라는 직관적 가설을 전제로 한다. 이와 같은 가설을 기반으로 하여 본 연구에서는 분류별 집중도, 신뢰도를 이용한 연관단어 뭉치, 연관단어 뭉치 간 코사인 유사도 및 신뢰도를 이용한 필터링 기법 등을 이용한 대체어 후보 자동 생성 방법을 제안한다. 본 연구에서 제안한 대체어 후보 자동 생성 방법의 성능은 대체어 유형별로 작성된 평가지표를 이용하여 정확도 및 재현율을 측정함으로써 평가되었으며, 제안 방법이 context window overlapping을 이용한 대체어 추출 방법보다 더 우수한 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.