• Title/Summary/Keyword: Co-polymer

Search Result 1,924, Processing Time 0.03 seconds

Cell Co-culture Method by Patterned Gratt of Thermo-Responsive Polymer (온도응답성 고분자의 패턴상 그래프트를 이용한 공배양법)

  • Bae Jin Suk;Ahn Chang Hyun;Yoon Kwan Han;Kwon Oh Hyeong;Kang Inn-Kyu;Yamato Masayuki;Kikuchi Akihiko;Okano Teruo
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.294-299
    • /
    • 2005
  • Thermo-responsive poly(N-isopropylacrylamide) (PIPAAm) was covalently patterned by masked el electron beam irradiation. Introduction of PIPAAm on tissue culture polystyrene dish was confirmed by ATR-FTIR and ESCA measurements. Hepatocytes were cultured at $37^{circ}C$ on these surfaces. Cells adhered on PIPAAm-grafted domains were detached by reducing culture temperature to $20^{circ}C$. Endothelial cells were then seeded and cultured on the same surfaces. Seeded endothelial cells were selectively attached on hepatocytes detached and PIPAAm-grafted domains and could be co-cultured with hepatocytes on the same culture dishes with clear pattern. This co-culture method enabled long-term co-culture of hepatocytes with endothelial cells.

Dielectric Properties of Polymer-ceramic Composites for Embedded Capacitors

  • Yoon, Jung-Rag;Han, Jeong-Woo;Lee, Kyung-Min
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.116-120
    • /
    • 2009
  • Ceramic-polymer composites have been investigated for their suitability as embedded capacitor materials because they combine the processing ability of polymers with the desired dielectric properties of ceramics. This paper discusses the dielectric properties of the ceramic ($BaTiO_3$)-polymer (Epoxy) composition as a function of ceramic particle size at a ceramic loading of 40 vol%. The dielectric constant of these ceramic-polymer composites increases as the powder size decreases. Results show that ceramic-polymer composites have a high dielectric constant associated with the $BaTiO_3$ powder with a 200 nm particle size, high insulation resistance, high breakdown voltage (> 22 KV/mm), and low dielectric loss (0.018-0.024) at 1 MHz.

Electrocatalytic Reduction of Molecular Oxygen at Poly(1,8-diaminonaphthalene) and Poly(Co(II)-(1,8-diaminonaphthalene)) Coated Electrodes

  • Park, Hyun;Kwon, Tae-guen;Park, Deog-Su;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1763-1768
    • /
    • 2006
  • The application of poly(Co(II)-(1,8-diaminonaphthalene))(poly(Co-DAN)) and poly(1,8-diaminonaphthalene) (Poly(1,8-DAN)) to the electrocatalytic reduction of molecular oxygen was investigated, which were electrochemically grown by the potential cycling method on the glassy carbon electrodes. The reduction of oxygen at the polymer and its metal complex polymer coated electrodes were irreversible and diffusion controlled. The Poly(1,8-DAN) and Poly(Co-DAN) films revealed the potential shifts for the oxygen reduction to 30 mV and 110 mV, respectively, in an aqueous solution, compared with that of the bare electrode. Hydrodynamic voltammetry with a rotating ring-disk electrode showed that Poly(1,8-DAN) and Poly(Co-DAN) coated electrodes converted respectively 84% and 22% of $O_2$ to $H_2O$ via a four electron reduction pathway.

Synthesis and Characterization of Conductive Polyaniline-Modified Polymers via Nitroxide Mediated Radical Polymerization (NMRP 중합법을 이용한 전도성 폴리아닐린-수식 고분자의 제조와 특성)

  • Jaymand, Mehdi
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.553-559
    • /
    • 2010
  • The paper describes the preparation and characterization of conductive polyaniline-modified polymers by growing of aniline onto functionalized poly(styrene-co-p-methylstyrene) [P(St-co-MSt)]. For this purpose, P(St-co-MSt) was synthesized via nitroxide mediated radical polymerization (NMRP) and then N-boromosuccinimide was used for introduction of bromine to the benzylic positions of copolymer. Afterwards, 1,4-phenylenediamine was linked to the brominated P(St-co-MSt) and functionalized copolymer $[P(St-co-MSt)-NH_2]$ was prepared. The graft copolymerization of aniline monomers onto functionalized P(St-co-MSt) was initiated by oxidized phenylamine groups after addition of ammonium peroxydisulfate (APS), and p-toluenesulfonic acid-doped PANI was chemically grafted onto P(St-co-MSt) via oxidation polymerization. The obtained terpolymer was studied by FTIR and UV-Vis spectroscopy and its thermal behaviour were examined by DSC and TGA analyses. The conductivity of terpolymer was measured by four-point probe method and electroactivity was measured by cyclic voltammetry (CV). The solubility of P(St-co-MSt)-g-PANI was examined in common organic solvents.

New Liquid Crystal-Embedded PVdF-co-HFP-Based Polymer Electrolytes for Dye-Sensitized Solar Cell Applications

  • Vijayakumar, G.;Lee, Meyoung-Jin;Song, Myung-Kwan;Jin, Sung-Ho;Lee, Jae-Wook;Lee, Chan-Woo;Gal, Yeong-Soon;Shim, Hyo-Jin;Kang, Yong-Ku;Lee, Gi-Won;Kim, Kyung-Kon;Park, Nam-Gyu;Kim, Suhk-Mann
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.963-968
    • /
    • 2009
  • Liquid crystal (LC; E7 and/or ML-0249)-embedded, poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based, polymer electrolytes were prepared for use in dye-sensitized solar cells (DSSCs). The electrolytes contained 1-methyl-3-propylimidazolium iodide (PMII), tetrabutylammonium iodide (TBAI), and iodine ($I_2$), which participate in the $I_3^-/I^-$ redox couple. The incorporation of photochemically stable PVdF-co-HFP in the DSSCs created a stable polymer electrolyte that resisted leakage and volatilization. DSSCs, with liquid crystal(LC)-embedded PVdF-co-HFP-based polymer electrolytes between the amphiphilic ruthenium dye N719 absorbed to the nanocrystalline $TiO_2$ photoanode and the Pt counter electrode, were fabricated. These DSSCs displayed enhanced redox couple reduction and reduced charge recombination in comparison to that fabricated from the conventional PVdF-co-HFP-based polymer electrolyte. The behavior of the polymer electrolyte was improved by the addition of optimized amounts of plasticizers, such as ethylene carbonate (EC) and propylene carbonate (PC). The significantly increased short-circuit current density ($J_{sc}$, $14.60\;mA/cm^2$) and open-circuit voltage ($V_{oc}$, 0.68 V) of these DSSCs led to a high power conversion efficiency (PCE) of 6.42% and a fill factor of 0.65 under a standard light intensity of $100\;mW/cm^2$ irradiation of AM 1.5 sunlight. A DSSC fabricated by using E7-embedded PVdF-co-HFP-based polymer electrolyte exhibited a maximum incident photon-to-current conversion efficiency (IPCE) of 50%.

Preparation and Swelling Properties of Poly(potassium acrylate-co-acrylamide) Superabsorbent Particles (폴리(아크릴산 포타슘-co-아크릴아마이드) 고흡수성 입자의 제조 및 팽윤 특성)

  • 손오건;심상준;이동현;이영관;김지홍;김덕준
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • Superabsorbent poly(potassium acrylate-co-acrylamide)s were synthesized in particle form using inverse suspension polymerization technique. Mean diameter of the prepared polymer particles decreased from 300 to 50 $\mu\textrm{m}$ with increasing surfactant concentration. The dynamic and equilibrium swelling behaviors during water absorption and drying process were investigated by weight measurement. The swelling ratio of polymer particles in water changed according to not only polymer crosslinking density, but particle size, saline concentration of aqueous medium, and copolymer compositions. Water sorption amount was increased with decreasing particle size, crosslinking agent concentration, and ion concentration in bulk solution. Being different from the water sorption process, the drying process was not significantly affected by particle size, polymer composition, or crosslinking amount.