Cell Co-culture Method by Patterned Gratt of Thermo-Responsive Polymer

온도응답성 고분자의 패턴상 그래프트를 이용한 공배양법

  • Bae Jin Suk (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Ahn Chang Hyun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Yoon Kwan Han (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kwon Oh Hyeong (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kang Inn-Kyu (Department of Polymer Science, Kyungpook National University) ;
  • Yamato Masayuki (Institute of Advanced Biomedical Engineering and Science Tokyo Women's Medical University) ;
  • Kikuchi Akihiko (Institute of Advanced Biomedical Engineering and Science Tokyo Women's Medical University) ;
  • Okano Teruo (Institute of Advanced Biomedical Engineering and Science Tokyo Women's Medical University)
  • 배진숙 (금오공과대학교 고분자공학과) ;
  • 안창현 (금오공과대학교 고분자공학과) ;
  • 윤관한 (금오공과대학교 고분자공학과) ;
  • 권오형 (금오공과대학교 고분자공학과) ;
  • 강인규 (경북대학교 고분자공학과) ;
  • ;
  • ;
  • Published : 2005.05.01

Abstract

Thermo-responsive poly(N-isopropylacrylamide) (PIPAAm) was covalently patterned by masked el electron beam irradiation. Introduction of PIPAAm on tissue culture polystyrene dish was confirmed by ATR-FTIR and ESCA measurements. Hepatocytes were cultured at $37^{circ}C$ on these surfaces. Cells adhered on PIPAAm-grafted domains were detached by reducing culture temperature to $20^{circ}C$. Endothelial cells were then seeded and cultured on the same surfaces. Seeded endothelial cells were selectively attached on hepatocytes detached and PIPAAm-grafted domains and could be co-cultured with hepatocytes on the same culture dishes with clear pattern. This co-culture method enabled long-term co-culture of hepatocytes with endothelial cells.

온도응답성 고분자인 PIPAAm을 포토마스크를 사용하여 전자빔조사에 의해 패턴상으로 세포배양용 폴리스티렌 접시표면에 그래프트하였다. 폴리스티렌 표면에의 PIPAAm의 그래프트는 AIR-FTIR과 ESCA에 의한 표면분석을 통해 확인하였다. 이러한 표면에 간실질세포를 $37^{circ}C$에서 배양하였고, 균일하게 간세포가 배양된 배양접시를 PIPAAm의 LCST 이하인 $20^{circ}C$로 배양온도를 낮추어 PIPAAm이 그래프트된 도메인에 접착된 간실질세포를 탈착시키고 배양접시를 다시 $37^{circ}C$로 올린 후 두 번째 세포인 혈관내피세포를 파종하여 PIPAAm이 그래프트된 도메인에만 선택적으로 접착시킴으로써 같은 평면상에서 간실질세포와 혈관내피세포를 공배양할 수 있게 되었다. 이러한 방법으로 생체외에서 간실질세포와 혈관내피세포를 장기간에 걸쳐 공배양할 수 있었다.

Keywords

References

  1. R. Langer and J. P. Vacanti, Science, 260, 920 (1993) https://doi.org/10.1126/science.8493529
  2. J. Stange, S. R. Mitzner, and S. Klammt, Liver Transplantation, 6, 603 (2000) https://doi.org/10.1053/jlts.2000.7576
  3. J. Stange, S. R. Mitzner, and W. Ramlow, ASAIO J., 39, 621 (1993)
  4. C. S. Cho, Y H. Park, and I. K. Park, Polym. Sci. Tech., 10, 763 (1999)
  5. M. Hirose, M. Yamato, O. H. Kwon, M. Harimoto, and T. Okano, Yonsei Medical Journal, 41, 803 (2002)
  6. S. N. Bhatia, M. L. Yarmush, and M. Toner, J. Biomed. Mater. Res., 34, 189 (1997) https://doi.org/10.1002/(SICI)1097-4636(199702)34:2<189::AID-JBM8>3.0.CO;2-M
  7. R. Singhvi, G. Stephanopoulos, and D. I. C. Wang, Biotechnol. Bioen., 43, 764 (1994) https://doi.org/10.1002/bit.260430811
  8. C. Oakley and D. M. Bruntte, Cell Motility Cytoskei., 31, 45 (1995) https://doi.org/10.1002/cm.970310106
  9. J. S. Lee, M. Kaibara, M. Iwaki, J. Casabe, and M. Kusakabe, Biomaterials, 14, 71 (1993)
  10. A. Soekarno, B. Lom, and P. E. Hockberger, Neurolmage, 1, 129 (1993) https://doi.org/10.1006/nimg.1993.1006
  11. T. Matsuda, T. Sugawara, and K. Inoue, ASAIO J., 38, 243 (1992) https://doi.org/10.1097/00002480-199207000-00029
  12. M. Hirose, O. H. Kwon, M. Yamato, A. Kikuchi, and T. Okano, Biomacromolecules, 1, 377 (2000) https://doi.org/10.1021/bm0002961
  13. M. Yamato, O. H. Kwon, M. Hirose, A. Kikuchi, and T. Okano, J. Biomed. Mater. Res., 55, 137 (2001) https://doi.org/10.1002/1097-4636(200104)55:1<1::AID-JBM10>3.0.CO;2-#
  14. M. Yamato, A. Kikuchi, S. Kohsaka, T. Terasaki, H. A. V. Recum, S. W. Kim, Y Sakura, and T. Okano, TIssue Engineering for Therapeutic Use 3, Elsevier, Amsterdam, 99 (1999)
  15. M. Harimoto, M. Yamato, C. Takanashi, Y. Isoi, A. Kikuchi, and T. Okano, J. Biomed. Mater. Res., 62, 464 (2002) https://doi.org/10.1002/jbm.10228
  16. G. Chen, Y. Ito, Y. Imanishi, A. Magnani, S. Lamponi, and R. Barbucci, Bioconj. Chem., 8, 730 (1997) https://doi.org/10.1021/bc9700493
  17. F. Blanquaert, D. Barritault, and J. P. Carucelle, J. Biomed. Mater. Res., 44, 63 (1999) https://doi.org/10.1002/(SICI)1097-4636(199901)44:1<63::AID-JBM7>3.0.CO;2-S
  18. G. Chen, Y. Ito, and Y. Imanishi, Bioconj. Chem., 8, 106 (1999) https://doi.org/10.1021/bc960068x
  19. Y. Ito, T. Uno, S. Q. Liu, and Y. Imanashi, Biotechnol. Bioeng., 40, 1271 (1992) https://doi.org/10.1002/bit.260401017
  20. Y. Ito, S. Q. Liu, and Y. Imanashi, Biomaterials, 12, 449 (1991) https://doi.org/10.1016/0142-9612(91)90141-V
  21. J. H. Lee, S. J. Lee, G. Khang, and H. B. Lee, J. Biomater. Sci. Polym. Ed., 50, 283 (1999)
  22. M. Heskins and J. E. Guillet, J. Macromol. Sci. Chem., A2, 1441 (1968)
  23. T. Okano, M. Yamada, M. Okuhara, H. Sakai, and Y. Sakurai, Biomaterials, 16, 297 (1996) https://doi.org/10.1016/0142-9612(95)93257-E
  24. O. H. Kwon, A. Kikuchi, M. Yamato, Y. Sakurai, and T. Okano, J. Biomed. Mater. Res., 50, 82 (2000) https://doi.org/10.1002/(SICI)1097-4636(200004)50:1<82::AID-JBM12>3.0.CO;2-7