• 제목/요약/키워드: Co-phosphate

검색결과 630건 처리시간 0.031초

토양 방선균 Streptomyces sp. MG 121의 항균활성 및 고추 생육에 미치는 효과 (Effects of Streptomyces sp. MG 121 on Growth of Pepper Plants and Antifungal Activity)

  • 임태헌;조성현;김진호
    • 식물병연구
    • /
    • 제13권2호
    • /
    • pp.93-97
    • /
    • 2007
  • 비경작 산림 토양으로부터 고추 역병균과 탄저병균에 대한 항균활성, 불용태 인산의 가용화 및 식물체 초기생육촉진 효과를 보이는 방선균을 분리하였다. 선발된 미생물의 16S rDNA 염시서열을 분석한 결과, Streptomyces sp.로 동정되었다. Streptomyces sp. MG 121 균주는 고추열매를 이용한 역병과 탄저병을 80% 이상 억제하였다. MG 121균주 배양액의 식물체 엽면살포는 식물체의 초기생육을 10% 이상 촉진시키는 것으로 나타났다. 불용태 인산의 가용화 활성을 측정한 결과, 유리인산의 농도는 144시간 후 $762{\mu}g/ml$까지 증가하였다.

Phosphate Associated Cadmium Immobilization Mechanism Depending on the Original Concentration of Cd in Soil

  • Lee, Hyun Ho;Hong, Chang Oh
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.429-433
    • /
    • 2016
  • Adsorption and precipitation of cadmium (Cd) could be dependent on rate of P addition and Cd level in soil. Therefore, the objective of this study was to examine how addition rate of P affect mechanisms of Cd immobilization such as adsorption and precipitation in different levels of Cd in soil. Arable soils were spiked with inorganic Cd ($CdCl_2$) to give a total Cd concentration of 10, 100, and $1,000mg\;Cd\;kg^{-1}$. Monopotassium phosphate ($KH_2PO_4$, MPP) was selected as phosphate material and mixed with the pretreated arable soil at the rates of 0, 800, 1,600 and $3,200mg\;P\;kg^{-1}$. The mixture soils were incubated at $25^{\circ}C$ for 8 weeks in dark condition. Soil pH decreased with increasing MPP addition rate in all levels of Cd but negative charge of soil increased, thereby reducing 1 M $NH_4OAc$ extractable Cd. Soil solutions were undersaturated with respect to $CdCO_3$ and $Cd_3(PO_4)_2$ with all P addition rate in soil with low Cd level (${\leq}100mg\;Cd\;kg^{-1}$) but supersaturated in soil with high Cd level ($1,000mg\;Cd\;kg^{-1}$). From the above results, Cd solubility was controlled by precipitation of Cd minerals such as $CdCO_3$ and $Cd_3(PO_4)_2$ in soil with high Cd level but by Cd adsorption induced by increase in negative charge of soil with low level of Cd.

근적외선 필터용 인산계 유리의 광학적 특성 및 구조적 특성에 미치는 CuO 의 영향 (Effect of CuO on the Optical and Structural Properties of Phosphate Glass for Near-Infrard Filter)

  • 김성일;황종희;임태영;김진호;김영호;이종화;최덕균
    • 한국재료학회지
    • /
    • 제19권12호
    • /
    • pp.657-660
    • /
    • 2009
  • Optical characteristics and structural changes depending on CuO content in phosphate glasses that are used in near-infrared (near-IR) filters were investigated. With phosphate glasses that contain 1-9 mol% CuO, changes in optical transmittance, optical absorption, and color coordinate were measured with a UV-VIS spectrophotometer. An XPS (X-ray photoelectron spectroscopy) analysis was performed to determine valence of copper ion that influences optical characteristics in near-IR filter glasses. Structural changes in glasses depending on CuO content were also analyzed by FT-IR (Fourier transform infrared) and Raman spectrophotometers. From the UV-VIS spectrophotometer results, strong absorption peaks at 220 & 900 nm were found and transmittance was decreased. The color coordinates of the glasses were shifted to the green color direction with CuO addition for increasing absorption of long wavelength range spectra, in spite of the amount of $Cu^{2+}$, which gives a blue color to glasses, and which was increased in XPS results. Also, structural de-polymerization of glasses with CuO addition were found by FT-IR and Raman results.

Calcium release and physical properties of modified carbonate apatite cement as pulp capping agent in dental application

  • Zakaria, Myrna Nurlatifah;Cahyanto, Arief;El-Ghannam, Ahmed
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.346-351
    • /
    • 2018
  • Background: Carbonate apatite ($CO_3Ap$) and silica-calcium phosphate composite (SCPC) are bone substitutes with good prospect for dental application. SCPC creates a hydroxyapatite surface layer and stimulate bone cell function while, $CO_3Ap$ induce apatite crystal formation with good adaptation providing good seal between cement and the bone. Together, these materials will add favorable properties as a pulp capping material to stimulate mineral barrier and maintain pulp vitality. The aim of this study is to investigate modification of $CO_3Ap$ cement combined with SCPC, later term as $CO_3Ap-SCPC$ cement (CAS) in means of its chemical (Calcium release) and physical properties (setting time, DTS and pH value). Methods: The study consist of three groups; group 1 (100% calcium hydroxide, group 2 $CO_3Ap$ (60% DCPA: 40% vaterite, and group 3 CAS (60% DCPA: 20% vaterite: 20% SCPC. Distilled water was employed as a solution for group 1, and $0.2mol/L\;Na_3PO_4$ used for group 2 and group 3. Samples were evaluated with respect to important properties for pulp capping application such as pH, setting time, mechanical strength and calcium release evaluation. Results: The fastest setting time was in $CO_3Ap$ cement group without SCPC, while the addition of 20% SCPC slightly increase the pH value but did not improved the cement mechanical strength, however, the mechanical strength of both $CO_3Ap$ groups were significantly higher than calcium hydroxide. All three groups released calcium ions and had alkaline pH. Highest pH level, as well as calcium released level, was in the control group. Conclusion: The CAS cement had good mechanical and acceptable chemical properties for pulp capping application compared to calcium hydroxide as a gold standard. However, improvements and in vivo studies are to be carried out with the further development of this material.

Hardening and Hydroxyapatite Formation of Bioactive Cement Prepared from Calcium Phosphosilicate Glass

  • Kim, Cheol-Young;Park, Sang-Jong
    • The Korean Journal of Ceramics
    • /
    • 제1권3호
    • /
    • pp.131-136
    • /
    • 1995
  • It has been reported that the biocement obtained by mixing $CaO-SiO_2-P_2O_5$ glass powders with ammonium phosphate solution has biocompatibility as will as high strength. The hardening mechanism and hydroxyapatite forming mechanism were discussed when $53.6%CaO_1,\; 38.1%SiO_2,\; 7.7P_2O_6,\; 0.6%CaF_2$(mole %) glass powder was reacted with ammonium phosphate solution and reacted in tris-buffer solution, respectively. High strength hardened biocement was obtained for the specimen with $CaNH_4PO_4\;H_2O$ crystal when the glass powder was mixed with ammonium phosphate solution, and hydroxyapatite crystal was rapidly formed only in the sample with $CaNH_4PO_4\;H_2O$ crystal when it was reacted in tris-buffer solution.

  • PDF

Effect of Tris(trimethylsilyl) Phosphate Additive on the Electrochemical Performance of Nickel-rich Cathode Materials at High Temperature

  • Jang, Seol Heui;Mun, Junyoung;Kang, Dong-Ku;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권2호
    • /
    • pp.162-168
    • /
    • 2017
  • $LiNi_xCo_yMn_zO_2$ cathode materials have been the focus of much attention because of their high specific capacity. However, because of the poor interfacial stability between cathodes and electrolytes, the cycling performance of these materials fades rapidly, especially at high temperatures. In the present paper, we propose the use of tris(trimethylsilyl) phosphate (TMSPO), which contains phosphate and silyl functional groups, as a functional additive in electrolytes. The addition of TMSPO resulted in the formation of cathode electrolyte interphase (CEI) layers on the surfaces of the cathodes and effectively suppressed electrolyte decomposition reactions, even at high temperatures. As a result, cells cycled with TMSPO exhibited remarkable capacity, which remained after 50 cycles (82.0%), compared to cells cycled without TMSPO (64.6%).

Hydroxyapatite Bioceramics의 합성 및 물성에 관한 연구 (A Study on the Preparation and Properties of Hydroxyapatite Bioceramics)

  • 이석곤;고형열;이구종;최상흘
    • 한국세라믹학회지
    • /
    • 제26권2호
    • /
    • pp.171-178
    • /
    • 1989
  • In order to develope hydroxyapatite ceramics which has mechanical strength as bio-implant materials and get the basic data for the study and application of biocompatibility, hydroxyapatite was synthesized at Ca/P=1.67~1.75, pH 7~11 by precipitation method. Using prepared powders, the sintered body, fluorine substituted body and the porous body was formed and their properties were investigated. The sample obtained in condition of Ca/P=1.67, pH 7 and sintering at 1,15$0^{\circ}C$ was decomposed to $\beta$-tricalcium phosphate, and co-existed with hydroxyapatite. Hydroxyapatite synthesized at pH 11 was not easily decomposed to $\beta$-tricalcium phosphate at sintering process. The substitution of a small amount of fluorine for hydroxyapatite prevented hydroxyapatite from being decompsed to $\beta$-tricalcium phosphate. Hydroxyapatite ceramics which substited of 10% fluorine was prepared at 1,15$0^{\circ}C$, and the valueof bending strength for this body were found to be 112MPa.

  • PDF

탄소강의 녹물저감에 대한 인산염부식억제제와 석회수 효과 연구 (The Effects of Polyphosphate Corrosion Inhibitor and Lime Water to Reduce Red Water for Carbon Steel)

  • 박영복;공성호
    • 상하수도학회지
    • /
    • 제19권2호
    • /
    • pp.228-237
    • /
    • 2005
  • The main purpose of this study was to investigate the red water reducing effects of phosphate based inhibitor when it was applied to water distribution system. The effects of pH, alkalinity, calcium concentration in the reduction of the red water also studied. The most finished water in Korea showed relatively high corrosiveness and was required to introduce some types of corrosion reducing methods such as addition of alkalinity. The precipitation of $CaCO_3$ by addition of $Ca(OH)_2$ formed porous film on the surface of the carbon steel pipes and was displaced easily from the surface of the pipes; on the other hand, addition of zinc phosphate (ZOP) formed reliable film on the surface and reduced iron release and color. Although the main function of ZOP was to suppress the release of Pb and Cu, it also reduced iron concentration released from water distribution pipes.

Photoacoustic Spectroscopic Study on Cobalt Incorporation onto the Surface of Mesoporous Molecular Sieves

  • 박동호;박성수;최상준
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권6호
    • /
    • pp.715-719
    • /
    • 1999
  • The incorporation of cobalt into mesoporous molecular sieves MCM-41 and MCM-48 was carried out. Co-PO/MCM41 and Co-PO/MCM48 were prepared using Co(II) acetate solution adjusted to pH = 3.0 with phosphoric acid by the incipient wetness method. Photoacoustic spectroscopy (PAS) was used to study the local environments of Co(II) incorporated into mesopores. The band around 500 nm in PAS of as-prepared Co-PO/MCM41 and Co-PO/MCM48 with Co(II) acetate solution was changed to triplet bands around 600 nm. This could be assigned to the 4 A2(F)-> 4T1(P) transition of Co(II) surrounded tetrahedrally by oxygen ions after calcination. It may be attributable to that the octahedral cobalt species containing phosphate ligands in coordination sphere reacting with framework's silanol groups to be dispersed atomically onto the surface of mesoporous molecular sieves as a tetrahedral species. This is unlike that the Co in Co-Cl/MCM41 and direct-synthesized Co-MCM41 transforms to Co oxide phase upon calcination. Co-PO/MCM41 and Co-PO/MCM48 were stable while treated with water.

이산화탄소 지중 격리용 인산염 혼입 시멘트 페이스트에 관한 기초물성 평가 (Evaluation on the Basic Properties of Phosphate Modified Portland Cement Paste for Potential Application of Geologic CO2 Sequestration)

  • 윤주한;김성근;김지현;이재용;정철우
    • 한국건축시공학회지
    • /
    • 제17권3호
    • /
    • pp.253-260
    • /
    • 2017
  • 지구온난화가 세계적으로 이슈가 되면서 이산화탄소 포집 및 저장기술의 개발에 관한 많은 노력이 집중되고 있다. 이중 이산화탄소 지중저장은 포집된 이산화탄소를 초임계 상태로 지하의 암반층에 안정적으로 저장하여 대기로의 유출을 방지하는 기술이다. 이와 같이 저장된 이산화탄소의 유출을 막기 위해 콘크리트를 사용하는데, 이 때 콘크리트는 매우 공격적인 형태의 중성화로 인해 내구성이 열화될 수 있다. 그러므로 본 연구에서는 이에 대한 안정성을 높이기 위해 포틀랜드 시멘트에 인산칼슘을 혼입하여 지구상에서 가장 안정적인 물질중 하나인 수산화인회석을 생성시키고자 하였다. 따라서 본 연구에서는 인산칼슘을 혼입한 포틀랜드 시멘트 페이스트의 수화온도, 점성, 응결 및 경화, 압축강도 변화를 분석하였다. 그 결과, 인산칼슘이 혼입되면 페이스트의 점도를 증가되나 최대수화온도는 낮아지고, 28일 압축강도 또한 저하되는 것으로 나타났다. 특히 인산이수소칼슘은 포틀랜드 시멘트와 함께 사용하기는 어려운 것으로 나타났으며, 인산수소칼슘 및 인산삼칼슘을 혼입한 경우에는 장기강도 성상을 확인한 후 활용가능성을 타진할 필요가 있는 것으로 나타났다.