DOI QR코드

DOI QR Code

Effects of Streptomyces sp. MG 121 on Growth of Pepper Plants and Antifungal Activity

토양 방선균 Streptomyces sp. MG 121의 항균활성 및 고추 생육에 미치는 효과

  • 임태헌 (㈜삼호유비농생명과학연구소) ;
  • 조성현 (효성오앤비) ;
  • 김진호 (상주대학교 생명자원과학대학 식물자원학과)
  • Published : 2007.08.01

Abstract

The microorganisms with the antifungal activity against Phytophthora capsici and Colletotrichum acutatum and the plant growth promotion activity were screened from forest soils of Moon-gyeong (Juheul Mountain), Gyeongsangbuk-do. One of the isolates, strain MG 121 showed antifungal activity against P. capsici and C. acutatum and possessed phosphate solubilization activity was selected to development biocontrol agent. The strain MG 121 was identified as Streptomyces sp. by analysis of 16S rDNA. On the test with pepper fruits, the strain inhibited disease incidences of late blight and anthracnose over 80%. In greenhouse test, plant height, the number of leaf, fresh weight and roots length of pepper plants upon treatment of culture suspension of Streptomyces sp. MG 121 were significantly higher than those without the bacterial cells. In addition, strain MG 121 was capable to solublize rock-phosphate after incubation for 144 hours in potato dextrose broth. The concentration of soluble phosphate in PDB amended with 0.5% rock-phosphate was increased up to $765{\mu}g/ml$.

비경작 산림 토양으로부터 고추 역병균과 탄저병균에 대한 항균활성, 불용태 인산의 가용화 및 식물체 초기생육촉진 효과를 보이는 방선균을 분리하였다. 선발된 미생물의 16S rDNA 염시서열을 분석한 결과, Streptomyces sp.로 동정되었다. Streptomyces sp. MG 121 균주는 고추열매를 이용한 역병과 탄저병을 80% 이상 억제하였다. MG 121균주 배양액의 식물체 엽면살포는 식물체의 초기생육을 10% 이상 촉진시키는 것으로 나타났다. 불용태 인산의 가용화 활성을 측정한 결과, 유리인산의 농도는 144시간 후 $762{\mu}g/ml$까지 증가하였다.

Keywords

References

  1. Agrios, G. N. 1997. Plant Pathology. Academic Press, Inc., New York. 635 pp
  2. Baker, C. J., Stavely, J. R., Thomas, C. A., Saser, M. and MacFall, J. S. 1983. Inhibitory effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves. Phytopathology 73: 1148-1152 https://doi.org/10.1094/Phyto-73-1148
  3. Becker, J. O. 1993. Control of soil-borne pathogens with living bacteria and fungi: status and outlook. Pestic. Sci. 37: 355-363 https://doi.org/10.1002/ps.2780370408
  4. Bus, V. G., Bongers, A. J. and Risse, L. A. 1991. Occurrence of Penicillium digitatum and P. ialicum resistant to benomyl, thiabendazole, and imazail on citrus fruit from different geographic origins. Plant Dis. 75: 1098-1100 https://doi.org/10.1094/PD-75-1098
  5. Chet, I. and Inbar, J. 1994. Biological control of fungal pathogens. Appl. Biochem. Biotechnol. 48: 37-43 https://doi.org/10.1007/BF02825358
  6. Delp, C. J. 1988. Fungicide resistance in North America, pp. 133. The American Phytopathological Society, St. Paul, Minn
  7. Jee, H. J., Cho, W. D. and Kim, C. H. 2000. Phytophthora disease in Korea. RDA. 226 pp
  8. Joo, G. J., Lee, I. H. and Kim, J. H. 2002. Chitinase production and Isolation of Serratia plymuthica AL-1 antagonistic to white rot fungi from Allium fistulosum roots. Kor. J. Microbiol. Biotechol. 30: 135-141
  9. Katz, E. and Demain, A. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41: 449-474
  10. Lange, L., Breinholt, J., Rasmussen, F. W. and Nielsen, R. I. 1993. Microbial fungicide-the natural choice. Pestic. Sci. 39: 155-160 https://doi.org/10.1002/ps.2780390209
  11. Kim, H. L., Jung, B. N. and Sohn, B. K. 2007. Production of weak acid by anaerobic fermentation of soil and antifungal effect. J. Microbiol. Biotechnol. 17: 691-694
  12. Lee, T. G. 2001. Development of a biofertilizer using phosphate-solubilizig fungus, Penicillium sp. PS-113., pp 116. Thesis of Ph. D. Dae University
  13. Lim, T. H., Lee, J. M., Chang, T. H. and Cha, B. J. 2000. Antifungal activity and identification of an Actinomycetes strain isolated from mummified peaches. Kor. J. Appl. Microbiol. Biotechnol. 28: 161-166
  14. Lim, T. H. 2005. Antifungal activity of Streptomyces griseofuscus 200401 against pathogens causing late blight and anthracnose on pepper. Korean J. Pestic. Sci. 9: 102-107
  15. Lifschitz, R., Kleopper, J. W., Kozlowshi, M., Simonson, C., Carlson, J. and Tipping E. M. 1987. Growth promotion of canola seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 51: 251-255 https://doi.org/10.1139/w04-136
  16. Powel, K. A. and Fox, F. M. 1993. Technical and commercial aspects of biocontrol produts. Pestic. Sci. 37: 315-321 https://doi.org/10.1002/ps.2780370403

Cited by

  1. Screening of Antagonistic Bacteria for Biological control of Ginseng Root Rot vol.40, pp.1, 2012, https://doi.org/10.4489/KJM.2012.40.1.044
  2. Nematicidal and Reproduction Supression Activity of Actinomyces Isolates against Pine Wood Nematode, Bursaphelenchus xylophilus vol.19, pp.2, 2015, https://doi.org/10.7585/kjps.2015.19.2.141
  3. Biological Control of Root-knot Nematode by Streptomyces sampsonii KK1024 vol.44, pp.6, 2011, https://doi.org/10.7745/KJSSF.2011.44.6.1150
  4. Effects of Streptomyces spp. on Growth of Plants and Antifungal Activity of Plant Pathogens vol.16, pp.4, 2012, https://doi.org/10.7585/kjps.2012.16.4.383
  5. Selection of Antagonistic Microorganisms against Plant Pathogens from Eco-friendly Formulations vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.68
  6. Influence of the Rice Bran Formulation Treatment on Yield, Physiochemical Property, Microbial Community and Wilt Disease Suppression in Upland Soil Cultivated Pepper vol.48, pp.1, 2014, https://doi.org/10.14397/jals.2014.48.1.41
  7. Selection of Antifungal Bacteria Burkholderia lata CAB13001 for Control on Red Pepper Anthracnose and Its Control Efficacy in Field vol.26, pp.4, 2018, https://doi.org/10.11625/KJOA.2018.26.4.649