• Title/Summary/Keyword: Co-occurrence probability

Search Result 38, Processing Time 0.027 seconds

Spliced Image Detection Using Characteristic Function Moments of Co-occurrence Matrix (동시 발생 행렬의 특성함수 모멘트를 이용한 접합 영상 검출)

  • Park, Tae-Hee;Moon, Yong-Ho;Eom, Il-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.265-272
    • /
    • 2015
  • This paper presents an improved feature extraction method to achieve a good performance in the detection of splicing forged images. Strong edges caused by the image splicing destroy the statistical dependencies between parent and child subbands in the wavelet domain. We analyze the co-occurrence probability matrix of parent and child subbands in the wavelet domain, and calculate the statistical moments from two-dimensional characteristic function of the co-occurrence matrix. The extracted features are used as the input of SVM classifier. Experimental results show that the proposed method obtains a good performance with a small number of features compared to the existing methods.

Image retrieval using block color characteristics and spatial pattern correlation (블록 컬러 특징과 패턴의 공간적 상관성을 이용한 영상 검색)

  • Chae, Seok-Min;Kim, Tae-Su;Kim, Seung-Jin;Lee, Kun-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.9-11
    • /
    • 2005
  • We propose a new content-based image retrieval using a block color co-occurrence matrix (BCCM) and pattern correlogram. In the proposed method, the color feature vectors are extracted by using BCCM that represents the probability of the co-occurrence of two mean colors within blocks. Also the pattern feature vectors are extracted by using pattern correlogram which is combined with spatial correlation of pattern. In the proposed pattern correlogram method. after block-divided image is classified into 48 patterns with respect to the change of the RGB color of the image, joint probability between the same pattern from the surrounding blocks existing at the fixed distance and the center pattern is calculated. Experimental results show that the proposed method can outperform the conventional methods as regards the precision and the size of the feature vector dimension.

  • PDF

Selective Feature Extraction Method Between Markov Transition Probability and Co-occurrence Probability for Image Splicing Detection (접합 영상 검출을 위한 마르코프 천이 확률 및 동시발생 확률에 대한 선택적 특징 추출 방법)

  • Han, Jong-Goo;Eom, Il-Kyu;Moon, Yong-Ho;Ha, Seok-Wun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.833-839
    • /
    • 2016
  • In this paper, we propose a selective feature extraction algorithm between Markov transition probability and co-occurrence probability for an effective image splicing detection. The Features used in our method are composed of the difference values between DCT coefficients in the adjacent blocks and the value of Kullback-Leibler divergence(KLD) is calculated to evaluate the differences between the distribution of original image features and spliced image features. KLD value is an efficient measure for selecting Markov feature or Co-occurrence feature because KLD shows non-similarity of the two distributions. After training the extracted feature vectors using the SVM classifier, we determine whether the presence of the image splicing forgery. To verify our algorithm we used grid search and 6-folds cross-validation. Based on the experimental results it shows that the proposed method has good detection performance with a limited number of features compared to conventional methods.

Improved Tag Selection for Tag-cloud using the Dynamic Characteristics of Tag Co-occurrence (태그 동시 출현의 동적인 특징을 이용한 개선된 태그 클라우드의 태그 선택 방법)

  • Kim, Du-Nam;Lee, Kang-Pyo;Kim, Hyoung-Joo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.6
    • /
    • pp.405-413
    • /
    • 2009
  • Tagging system is the system that allows internet users to assign new meta-data which is called tag to article, photo, video and etc. for facilitating searching and browsing of web contents. Tag cloud, a visual interface is widely used for browsing tag space. Tag cloud selects the tags with the highest frequency and presents them alphabetically with font size reflecting their popularity. However the conventional tag selection method includes known weaknesses. So, we propose a novel tag selection method Freshness, which helps to find fresh web contents. Freshness is the mean value of Kullback-Leibler divergences between each consecutive change of tag co-occurrence probability distribution. We collected tag data from three web sites, Allblog, Eolin and Technorati and constructed the system, 'Fresh Tag Cloud' which collects tag data and creates our tag cloud. Comparing the experimental results between Fresh Tag Cloud and the conventional one with data from Allblog, our one shows 87.5% less overlapping average, which means Fresh Tag Cloud outperforms the conventional tag cloud.

Measure of the Associations of Accupoints and Pathologies Documented in the Classical Acupuncture Literature (고의서에 나타난 경혈과 병증의 연관성 측정 및 시각화 - 침구자생경 분석 예를 중심으로 -)

  • Oh, Junho
    • Korean Journal of Acupuncture
    • /
    • v.33 no.1
    • /
    • pp.18-32
    • /
    • 2016
  • Objectives : This study aims to analyze the co-occurrence of pathological symptoms and corresponding acupoints as documented by the comprehensive acupuncture and moxibustion records in the classical texts of Far East traditional medicine as an aid to a more efficient understanding of the tacit treatment principles of ancient physicians. Methods : The Classic of Nourishing Life with Acupuncture and Moxibustion(Zhenjiu Zisheng Jing; hereinafter ZZJ) was selected as the primary reference book for the analysis. The pathology-acupoint co-occurrence analysis was performed by applying 4 values of vector space measures(weighted Euclidean distance, Euclidean distance, $Cram\acute{e}r^{\prime}s$ V and Canberra distance), which measure the distance between the observed and expected co-occurrence counts, and 3 values of probabilistic measures(association strength, Fisher's exact test and Jaccard similarity), which measure the probability of observed co-occurrences. Results : The treatment records contained in ZZJ were preprocessed, which yielded 4162 pathology-acupoint sets. Co-occurrence was performed applying 7 different analysis variables, followed by a prediction simulation. The prediction simulation results revealed the Weighted Euclidean distance had the highest prediction rate with 24.32%, followed by Canberra distance(23.14%) and association strength(21.29%). Conclusions : The weighted Euclidean distance among the vector space measures and the association strength among the probabilistic measures were verified to be the most efficient analysis methods in analyzing the correlation between acupoints and pathologies found in the classical medical texts.

Texture analysis of Thyroid Nodules in Ultrasound Image for Computer Aided Diagnostic system (컴퓨터 보조진단을 위한 초음파 영상에서 갑상선 결절의 텍스쳐 분석)

  • Park, Byung eun;Jang, Won Seuk;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • According to living environment, the number of deaths due to thyroid diseases increased. In this paper, we proposed an algorithm for recognizing a thyroid detection using texture analysis based on shape, gray level co-occurrence matrix and gray level run length matrix. First of all, we segmented the region of interest (ROI) using active contour model algorithm. Then, we applied a total of 18 features (5 first order descriptors, 10 Gray level co-occurrence matrix features(GLCM), 2 Gray level run length matrix features and shape feature) to each thyroid region of interest. The extracted features are used as statistical analysis. Our results show that first order statistics (Skewness, Entropy, Energy, Smoothness), GLCM (Correlation, Contrast, Energy, Entropy, Difference variance, Difference Entropy, Homogeneity, Maximum Probability, Sum average, Sum entropy), GLRLM features and shape feature helped to distinguish thyroid benign and malignant. This algorithm will be helpful to diagnose of thyroid nodule on ultrasound images.

Spectral Fatigue Analysis for Topside Structure of Offshore Floating Vessel

  • Kim, Dae-Ho;Ahn, Jae-Woo;Park, Sung-Gun;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.239-251
    • /
    • 2015
  • In this study, a spectral fatigue analysis was performed for the topside structure of an offshore floating vessel. The topside structure was idealized using beam elements in the SACS program. The fatigue analysis was carried out considering the wave and wind loads separately. For the wave-induced fatigue damage calculation, motion RAOs calculated from a direct wave load analysis and regular waves with different periods and unit wave heights were utilized. Then, the member end force transfer functions were generated covering all the loading conditions. Stress response transfer functions at each joint were produced using the specified SCFs and member end force transfer functions. fatigue damages were calculated using the obtained stress ranges, S-N curve, wave spectrum, heading probability of each loading condition, and their corresponding occurrences in the wave scatter diagrams. For the wind induced fatigue damage calculation, a dynamic wind spectral fatigue analysis was performed. First, a dynamic natural frequency analysis was performed to generate the structural dynamic characteristics, including the eigenvalues (natural frequencies), eigenvectors (mode shapes), and mass matrix. To adequately represent the dynamic characteristic of the structure, the number of modes was appropriately determined in the lateral direction. Second, a wind spectral fatigue analysis was performed using the mode shapes and mass data obtained from the previous results. In this analysis, the Weibull distribution of the wind speed occurrence, occurrence probability in each direction, damping coefficient, S-N curves, and SCF of each joint were defined and used. In particular, the wind fatigue damages were calculated under the assumption that the stress ranges followed a Rayleigh distribution. The total fatigue damages were calculated from the combination with wind and wave fatigue damages according to the DNV rule.

Extreme wind speeds from multiple wind hazards excluding tropical cyclones

  • Lombardo, Franklin T.
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.467-480
    • /
    • 2014
  • The estimation of wind speed values used in codes and standards is an integral part of the wind load evaluation process. In a number of codes and standards, wind speeds outside of tropical cyclone prone regions are estimated using a single probability distribution developed from observed wind speed data, with no distinction made between the types of causal wind hazard (e.g., thunderstorm). Non-tropical cyclone wind hazards (i.e., thunderstorm, non-thunderstorm) have been shown to possess different probability distributions and estimation of non-tropical cyclone wind speeds based on a single probability distribution has been shown to underestimate wind speeds. Current treatment of non-tropical cyclone wind hazards in worldwide codes and standards is touched upon in this work. Meteorological data is available at a considerable number of United States (U.S.) stations that have information on wind speed as well as the type of causal wind hazard. In this paper, probability distributions are fit to distinct storm types (i.e., thunderstorm and non-thunderstorm) and the results of these distributions are compared to fitting a single probability distribution to all data regardless of storm type (i.e., co-mingled). Distributions fitted to data separated by storm type and co-mingled data will also be compared to a derived (i.e., "mixed") probability distribution considering multiple storm types independently. This paper will analyze two extreme value distributions (e.g., Gumbel, generalized Pareto). It is shown that mixed probability distribution, on average, is a more conservative measure for extreme wind speed estimation. Using a mixed distribution is especially conservative in situations where a given wind speed value for either storm type has a similar probability of occurrence, and/or when a less frequent storm type produces the highest overall wind speeds. U.S. areas prone to multiple non-tropical cyclone wind hazards are identified.

Moving Object Tracking Using Co-occurrence Features of Objects (이동 물체의 상호 발생 특징정보를 이용한 동영상에서의 이동물체 추적)

  • Kim, Seongdong;Seongah Chin;Moonwon Choo
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper, we propose an object tracking system which can be convinced of moving area shaped on objects through color sequential images, decided moving directions of foot messengers or vehicles of image sequences. In static camera, we suggests a new evaluating method extracting co-occurrence matrix with feature vectors of RGB after analyzing and blocking difference images, which is accessed to field of camera view for motion. They are energy, entropy, contrast, maximum probability, inverse difference moment, and correlation of RGB color vectors. we describe how to analyze and compute corresponding relations of objects between adjacent frames. In the clustering, we apply an algorithm of FCM(fuzzy c means) to analyze matching and clustering problems of adjacent frames of the featured vectors, energy and entropy, gotten from previous phase. In the matching phase, we also propose a method to know correspondence relation that can track motion each objects by clustering with similar area, compute object centers and cluster around them in case of same objects based on membership function of motion area of adjacent frames.

  • PDF

Stochastic Glitch Estimation and Path Balancing for Statistical Optimization (통계적 최적화를 위한 확률적 글리치 예측 및 경로 균등화 방법)

  • Shin Ho-Soon;Kim Ju-Ho;Lee Hyung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.8 s.350
    • /
    • pp.35-43
    • /
    • 2006
  • In the paper, we propose a new method for power optimization that uses path balancing based on stochastic estimation of glitch in Statistical Static Timing Analysis (SSTA). The proposed method estimates the probability of glitch occurrence using tightness probability of each node in timing graph. In addition, we propose efficient gate sizing technique for glitch reduction using accurate calculation of sizing effect in delay considering probability of glitch occurrence. The efficiency of proposed method has been verified on ISCAS85 benchmark circuits with $0.16{\mu}m$ model parameters. Experimental results show up to 8.6% of accuracy improvement in glitch estimation and 9.5% of optimization improvement.