• Title/Summary/Keyword: Co-occurrence feature

검색결과 89건 처리시간 0.027초

PIM 기반 국부적 Co-occurrence 행렬 및 normalised correlation를 이용한 효율적 비디오 검색 방법 (Video image retrieval on the basis of subregional co-occurrence matrix texture features and normalised correlation)

  • 김규헌;정세윤;전병태;이재연;배영래
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.601-604
    • /
    • 1999
  • This Paper proposes the simple and efficient image retrieval algorithm using subregional texture features. In order to retrieve images in terms of its contents, it is required to obtain a precise segmentation. However, it is very difficult and takes a long computing time. Therefore. this paper proposes a simple segmentation method, which is to divide an image into high and low entropy regions by using Picture Information Measure (PIM). Also, in order to describe texture characteristics of each region, this paper suggest six different texture features produced on the basis of co-occurrence matrix. For an image retrieval system, a normalised correlation is adopted as a similarity function, which is not dependent on the range of each texture feature values. Finally, this proposed algorithm is applied to a various images and produces competitive results.

  • PDF

Wavelet 변환 영역에서 칼라 정보와 GLCM 및 방향성을 이용한 영상 검색 (Image Retrieval Using Color feature and GLCM and Direction in Wavelet Transform Domain)

  • 이정봉
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 춘계종합학술대회
    • /
    • pp.585-589
    • /
    • 2002
  • 본 논문에서는 효과적인 특징 추출을 기반으로 한 계층적인 검색 시스템을 제안한다. 조명 변화 및 영상의 이동과 크기 변화 그리고 회전과 같은 기하학적 변형에도 강한 속성을 가지는 영상 검색을 할 수 있도록 사용자의 질의 영상을 웨이블릿(Wavelet) 변환을 한 후 동일한 크기의 부영역으로 나누어진 저대역 부밴드에서 칼라의 특징으로 추출된 모멘트와 질감 특징인 GLCM(Gray Level Co-occurrence Matrix)의 Contrast를 사용해 유사 영상들의 1차 분류 과정을 거친다. 보다 정확한 검색을 수행하기 위해 1차 분류된 후보 영상들에 대해 고대역 부밴드에서 추출된 수평, 수직, 대각선 방향별 에너지(Energy)를 기반으로 한 에너지의 상대적인 성분 분포의 비교가 수행됨으로써 효율적인 영상 검색 결과를 보였다.

  • PDF

가중치 특징 벡터를 이용한 질감 영상 인식 방법 (Texture Classification by a Fusion of Weighted Feature)

  • 정수연;곽동민;윤옥경;박길흠
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.407-410
    • /
    • 2001
  • 최근 영상 검색(retrieval)과 분류(classification)에서 질감 특징(texture feature)을 이용한 연구들이 활발하게 진행되고 있다. 본 논문에서는 효율적인 질감 특징 추출을 위해 명암도 상호발생 행렬법(gray level co-occurrence matrix)과 웨이블릿 변환(wavelet transform)을 이용하여 질감의 특징을 추출한 후 특징의 중요도에 따라서 가중치를 부여하는 방법을 제안한다. 이렇게 추출된 가중치 대표 벡터들을 기반으로 베이시안 분류기(Bayesian classifier)를 통해 임의의 질감을 인식하였다.

  • PDF

스테고 잡음 확대를 위한 영상 분해와 동시 발생 확률에 기반한 스테그분석 (Steganalysis Based on Image Decomposition for Stego Noise Expansion and Co-occurrence Probability)

  • 박태희;김재호;엄일규
    • 대한전자공학회논문지SP
    • /
    • 제49권2호
    • /
    • pp.94-101
    • /
    • 2012
  • 본 논문은 커버 영상으로부터 스테고 영상의 검출율을 높이기 위한 개선된 스테그분석 기법을 제안한다. 스테그분석에서 스테고 영상의 검출율을 높이려면 데이터 은닉에 의해 야기되는 작은 변화가 증폭되어야 한다. 이를 위해 본 논문에서는 두 단계의 방법을 통해 커버 영상과 스테고 영상의 특징 벡터를 추출한다. 먼저 스테고 잡음을 두배 이상 확대하기 위해 주어진 영상을 상위 4비트와 하위 4비트로 각각 분해한다. 각 분해된 영상에 대하여 3-레벨 Haar 웨이블릿 변환을 통해 총 12개의 부밴드를 생성하고, 생성된 부밴드에 대하여 동일 스케일 상에서 다른 부밴드 계수간의 동시발생 확률을 구한다. 웨이블릿 영역에서 부 밴드간 계수의 동시발생 확률은 데이터 은닉에 의해 상관성에 영향을 받게 되므로 커버 및 스테고 영상을 구분하기 위한 특징으로 사용될 수 있다. 본 논문에서는 동시발생 확률의 특성함수에 대한 모멘트를 구하여 특징 벡터로 사용한다. 추출된 특징 벡터는 신경망회로망 분류기를 사용하여 커버 영상과 스테고 영상을 학습하고 판별한다. 제안 방법의 성능평가를 위해 S-tool에 의한 LSB 및 COX의 SS, F5 임베딩 방법에 의한 다양한 삽입률의 스테고 영상을 사용하였으며, 실험결과 제안한 기법은 기존의 기법에 비해 비밀 메시지 삽입 유무의 검출율을 향상시킬 뿐만 아니라 판별의 정확도가 높음을 확인할 수 있었다.

명암도 동시발생 행렬과 웨이블릿 특징 조합에 기반한 지문 분류 방법 (A Fingerprint Classification Method Based on the Combination of Gray Level Co-Occurrence Matrix and Wavelet Features)

  • 강승호
    • 한국멀티미디어학회논문지
    • /
    • 제16권7호
    • /
    • pp.870-878
    • /
    • 2013
  • 본 논문에서는 생체인증 시스템의 하나인 지문인식 시스템의 정확도와 효율성을 높이기 위한 새로운 지문 분류 방법을 제안한다. 기존 연구에 따르면 지문은 융선과 골의 방향과 형상에 따라 몇 가지 유형으로 분류할 수 있다. 지문 데이터베이스를 사전에 유형에 따라 분류해 놓고 인식 대상인 지문의 유형을 정확하게 분류할 수 있다면 지문 인식 시간을 크게 줄일 수 있다. 왜냐하면 선택된 부류 안의 지문들만을 상대로 인증 대상인 지문과 비교하면 되기 때문이다. 본 논문은 우선 지문 영상으로부터 실제 지문 정보가 위치하는 관심영역 추출 방법을 제시한다. 다음엔 추출된 관심영역을 대상으로 질감 인식기반의 명암도 동시발생 행렬과 웨이브릿 변환을 통한 특징 추출 방법을 제시하고 기존의 명암도 동시발생 행렬만을 이용한 특징 추출 방법과 다층 퍼셉트론 및 서포트 벡터 머신을 사용해 성능을 비교한다.

신경 회로망을 사용한 비 파라메테 텍스춰 추출 (Non-Parametric Texture Extraction using Neural Network)

  • 전동근;홍선표;송자윤;김상진;김기준;김성철
    • The Journal of the Acoustical Society of Korea
    • /
    • 제14권2E호
    • /
    • pp.5-11
    • /
    • 1995
  • 본 연구에서는 화상에 있어서 패턴의 공간적인 특징을 추출하기위한 목적으로 신경회로망을 적용하는 방법을 제안하였다. 적용한 신경회로망은 3중의 구조를 가지며, 그 학습방법으로는 back-propagation 알고리즘을 사용하였다. 또한 이동이나 회전과 같은 패턴의 변위에 대응하기 위하여, 화상으로부터 co-occurrence matrix를 구하여, 신경회로망의 입력패턴으로 사용하였다. 제안한 방법을 평가하기 위하여 종래의 대표적방법인 화소의 spectral 정보를 이용한 최대유도법(maximum likelihood method)으로는 식별이 곤란한 시가지지역과 모래지역을 선정하여, 본 방법과 Haralick에 의하여 제안된 teture features를 이용하여 분류한 결과, texture features를 이용한 방법으로는 67%~89%의 식별률을 얻었음에 반하여, 본 연구에서 제안한 신경회로망을 사용한 방법으로는 80%~98%의 안정되고 높은 식별률을 얻었다.

  • PDF

A Dependency Graph-Based Keyphrase Extraction Method Using Anti-patterns

  • Batsuren, Khuyagbaatar;Batbaatar, Erdenebileg;Munkhdalai, Tsendsuren;Li, Meijing;Namsrai, Oyun-Erdene;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • 제14권5호
    • /
    • pp.1254-1271
    • /
    • 2018
  • Keyphrase extraction is one of fundamental natural language processing (NLP) tools to improve many text-mining applications such as document summarization and clustering. In this paper, we propose to use two novel techniques on the top of the state-of-the-art keyphrase extraction methods. First is the anti-patterns that aim to recognize non-keyphrase candidates. The state-of-the-art methods often used the rich feature set to identify keyphrases while those rich feature set cover only some of all keyphrases because keyphrases share very few similar patterns and stylistic features while non-keyphrase candidates often share many similar patterns and stylistic features. Second one is to use the dependency graph instead of the word co-occurrence graph that could not connect two words that are syntactically related and placed far from each other in a sentence while the dependency graph can do so. In experiments, we have compared the performances with different settings of the graphs (co-occurrence and dependency), and with the existing method results. Finally, we discovered that the combination method of dependency graph and anti-patterns outperform the state-of-the-art performances.

Automated Detection of Retinal Nerve Fiber Layer by Texture-Based Analysis for Glaucoma Evaluation

  • Septiarini, Anindita;Harjoko, Agus;Pulungan, Reza;Ekantini, Retno
    • Healthcare Informatics Research
    • /
    • 제24권4호
    • /
    • pp.335-345
    • /
    • 2018
  • Objectives: The retinal nerve fiber layer (RNFL) is a site of glaucomatous optic neuropathy whose early changes need to be detected because glaucoma is one of the most common causes of blindness. This paper proposes an automated RNFL detection method based on the texture feature by forming a co-occurrence matrix and a backpropagation neural network as the classifier. Methods: We propose two texture features, namely, correlation and autocorrelation based on a co-occurrence matrix. Those features are selected by using a correlation feature selection method. Then the backpropagation neural network is applied as the classifier to implement RNFL detection in a retinal fundus image. Results: We used 40 retinal fundus images as testing data and 160 sub-images (80 showing a normal RNFL and 80 showing RNFL loss) as training data to evaluate the performance of our proposed method. Overall, this work achieved an accuracy of 94.52%. Conclusions: Our results demonstrated that the proposed method achieved a high accuracy, which indicates good performance.

An approach for improving the performance of the Content-Based Image Retrieval (CBIR)

  • Jeong, Inseong
    • 한국측량학회지
    • /
    • 제30권6_2호
    • /
    • pp.665-672
    • /
    • 2012
  • Amid rapidly increasing imagery inputs and their volume in a remote sensing imagery database, Content-Based Image Retrieval (CBIR) is an effective tool to search for an image feature or image content of interest a user wants to retrieve. It seeks to capture salient features from a 'query' image, and then to locate other instances of image region having similar features elsewhere in the image database. For a CBIR approach that uses texture as a primary feature primitive, designing a texture descriptor to better represent image contents is a key to improve CBIR results. For this purpose, an extended feature vector combining the Gabor filter and co-occurrence histogram method is suggested and evaluated for quantitywise and qualitywise retrieval performance criterion. For the better CBIR performance, assessing similarity between high dimensional feature vectors is also a challenging issue. Therefore a number of distance metrics (i.e. L1 and L2 norm) is tried to measure closeness between two feature vectors, and its impact on retrieval result is analyzed. In this paper, experimental results are presented with several CBIR samples. The current results show that 1) the overall retrieval quantity and quality is improved by combining two types of feature vectors, 2) some feature is better retrieved by a specific feature vector, and 3) retrieval result quality (i.e. ranking of retrieved image tiles) is sensitive to an adopted similarity metric when the extended feature vector is employed.

영상 객체의 특징 추출을 이용한 내용 기반 영상 검색 시스템 (Content-Based Image Retrieval System using Feature Extraction of Image Objects)

  • 정세환;서광규
    • 산업경영시스템학회지
    • /
    • 제27권3호
    • /
    • pp.59-65
    • /
    • 2004
  • This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture space. These schemes are used for object-based image retrieval. Features for image retrieval are three color features from HSV color model and five texture features from Gray-level co-occurrence matrices. Once the feature extraction scheme is performed in the image, 8-dimensional feature vectors represent each pixel in the image. VQ algorithm is used to cluster each pixel data into groups. A representative feature table based on the dominant groups is obtained and used to retrieve similar images according to object within the image. The proposed method can retrieve similar images even in the case that the objects are translated, scaled, and rotated.