• Title/Summary/Keyword: Co-milling

Search Result 247, Processing Time 0.031 seconds

Synthesis of Nanocrystalline BaTiO3 Powder by the Combination of High Energy Ball Milling of BaCO3-TiO2 Mixture and Solid-State Reaction (고에너지 볼밀링된 BaCO3와 TiO2 혼합분말의 고상반응에 의한 나노결정 BaTiO3 분말 합성)

  • Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.310-316
    • /
    • 2012
  • Nanocrystalline $BaTiO_3$ powder could be synthesized by solid-state reaction using the mixture which was prepared by a high energy milling process in a bead mill for $BaCO_3$ and nanocrystalline $TiO_2$ powders mixture. Effect of the milling time on the powder characteristic of the synthesized $BaTiO_3$ powder was investigated. Nanocrystalline $BaTiO_3$ with a particle size of 50 nm was obtained at $800^{\circ}C$. High tetragonal $BaTiO_3$ powder with a tetragonality(=c/a) of 1.009 and a specific surface area of $7.6m^2/g$ was acquired after heat-treatment at $950^{\circ}C$ for 2 h. High energy ball milling was effective in decreasing the reaction temperature and increasing the tetragonality.

Structure and Magnetic Properties on Synthesis Route of Co2Z-type Barium Hexaferrite (Co2Z-type Barium Hexaferrite의 합성방법에 따른 결정구조 및 자기적 특성)

  • Baek, In Seung;Nam, In Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • $Co_2Z$-type barium ferrites ($Ba_3Co_2Fe_{24}O_{41}$) were synthesized using variation method. First, M-type, $Co_2Y$-type and $Co_2Z$-type synthesized by hydrothermal method. Second, M- and Y-type precursors for synthesis of $Co_2Z$ hexaferrite by hydrothermal and ball milling method. the morphology, structure and magnetic properties of the barium ferrite particles were characterized using XRD, FESEM, VSM, impedance. As a result, Single phase of M-type and $Co_2Y$-type were obtained. Manufactured powders of M+Y ball milling, M+Y hydrothermal were similar to single phase of $Co_2Z$-type hexaferrite, all powders were obtained theoretical magnetization (50 emu/g). The largest initial permeability were obtained $Co_2Z$ hexaferrite synthesized by reagent precusor, With increasing calcination temperature was lowered the initial permeability. In another synthesis didn't almost that little change could be found.

Bond Strength between Co-Cr Alloy Metal and Ceramic (Co-Cr 합금의 금속-도재 결합 강도)

  • Kim, Min-Jeong;Park, Gwang-Sig
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.3
    • /
    • pp.602-608
    • /
    • 2021
  • For the comparison of bond strength between the Co-Cr alloy and ceramic, which are clinically used, test samples made with a traditional casting method as a control group), and Milling and SLM(3d printing group) samples were made as an experimental group. The metal-ceramic bond strength was measured with a universal testing machine. For the measurement, a three-point bending test was conducted. After the bond strength was measured, metal-ceramic interface was observed. According to the test result, casting group had 53.59 MPa, milling group had 45.90 MPa, and 3d printing group had 58.34 MPa. There was no statistical significance. With regard to failure pattern, most of the samples in two groups, showed mixed failure. This study showed a clinically applicable value when measuring the bond strength of alloy-ceramic material with an alloy produced by 3D printing.

A Study on the Synthesis of Co-ferrite by High-energy Ball Milling and Thermal Reduction Characteristics (고 에너지 볼 밀링을 통한 Co-ferrite 제조 및 열적 환원에 대한 연구)

  • Cho, M.S.;Kim, W.J.;Kim, C.H.;Kang, K.S.;Kim, Y.H.;Park, C.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.3
    • /
    • pp.309-316
    • /
    • 2006
  • Co-ferrite was synthesized by HEBM (High Energy Ball Milling) with a stoichiometric (Co/Fe=0.5/2.5) mixture of CoO and $Fe_2O_3$ powders. The effect of milling time on the phase transformation of the mixture was investigated by XRD. Mono-phase solid solution of Co-ferrite, which was milled for 4 h and then calcined at $900^{\circ}C$ in the Ar atmosphere, was confirmed by XRD analysis. The composition and thermal reduction behavior of Co-ferrite were analyzed by TGA and XRF. As a result, oxygen deficient Co-ferrite was synthesized by HEBM and the weight decrease of the Co-ferrite, which was oxidized at $600^{\circ}C$ for 10h by $H_2O$ vapor, was 2.41 wt% during thermal reduction at $1300^{\circ}C$.

Effects of Ball-Milling Time on Formation and Magnetic Properties of Ba-Ferrite (Ba-Ferrite의 생성 및 자기적 성질에 미치는 분쇄시간의 영향)

  • Hyo Duk Nam;Sang Hee Cho
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.224-232
    • /
    • 1983
  • The effects of ball-milling time on solid state reactions in the system $BaCO_3-Fe_2O_3$ and the magnetic properties of Ba-ferrite 4(BaFe_{12}O_{19})$ have been studied. $BaCO_3-Fe_2O_3 $mixtures were prepared by ball-milling for varying lengths of time; 5, 15, 30, 80 and 200 hours. Techniques employed were thermogravimetry, X-ray diffraction analysis, scanning electron microscopy and B-H curve tracer. It is shown that the aggregation states and superparamagnetic size fractions obtained by increasing ball-milling time have remarkable effects on solid state reactions and magnetic properties of Ba-ferrite.

  • PDF

Acoustic Monitoring of Rice Milling Process

  • Ikeda, Y.;Nishizu, T.;Akashi, S.;Satake, T.;Fukumori, T.;Mesaki, T.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2003.07a
    • /
    • pp.232-237
    • /
    • 2003
  • Sound has been rated negatively in many industrial areas as the noise to be removed. In the agricultural process such as rice milling based on grinding the surface of the rice, however, it may be anticipated that the sound can contain the some information on the process. In this research, on the assumption that variation of the shape of the rice kernel during milling may bring the change in frequency characteristic of sound signal, we tried to investigate the relationship between the milling degree in the grinding test mill and the resonance and anti-resonance frequencies (the frequencies at which the sound power has the extreme values). (omitted)

  • PDF

Effect of Graphite Mixing Method on Electrode Characteristics in Cathode Resynthesis of Lithium Battery (리튬전지(電池) 양극(陽極) 재합성시(再合成時) 흑연(黑鉛) 도전재(導電材) 혼합방법(混合方法)이 전극특성(電極特性)에 미치는 영향(影響))

  • Lee, Churl-Kyoung;Kim, Tae-Hyun
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.27-32
    • /
    • 2010
  • To improve electronic conductivity of cathodic active materials of lithium ion battery, carbonaceous materials is usually added. New mixing method of abrasive milling has been investigated in mixing of graphite and $LiCoO_2$ powders. It would be expected that uniform mixing of graphite reduces capacity fading of cathode of lithium battery. Abrasion milled $LiCoO_2$ composite showed the best electrochemical performance as a cathode material with 1 wt% of graphite content, 300 rpm of milling speed, and 10 min of milling time. The improvement of the electrochemical performances such as cycleability and charge/discharge capacity retention would be mainly attributed to increase of the electronic conductivity and/or prevention of the active materials by uniform dispersion and coating of graphite on $LiCoO_2$.

Synthesis of Carbonyl Iron-reinforced Polystyrene by High Energy Ball Milling

  • Nguyen, Hong-Hai;Nguyen, Minh-Thuyet;Kim, Won Joo;Kim, Jin-Chun;Kim, Young-Soo;Kim, Young-Hyuk;Nazarenko, Olga B.
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.276-281
    • /
    • 2016
  • Carbonyl iron (CI) is successfully incorporated as an additive into a polystyrene (PS) matrix via a highenergy ball milling method, under an n-hexane medium with volume fractions between 1% and 5% for electromagnetic interference shielding applications by the combination of magnetic CI and an insulating PS matrix. The morphology and the dispersion of CI are investigated by field emission scanning electron microscopy, which indicates a uniform distribution of CI in the PS matrix after 2 h of milling. The thermal behavior results indicate no significant degradation of the PS when there is a slight increase in the onset temperature with the addition of CI powder, when compared to the as-received PS pellet. After milling, there are no interactions between the CI and the PS matrix, as confirmed by Fourier transformed infrared spectroscopy. In this study, the milled CI-PS powder is extruded to make filaments, and can have potential applications in the 3-D printing industry.