• Title/Summary/Keyword: Co-laboratory

Search Result 3,231, Processing Time 0.039 seconds

A Three-dimensional Magnetic Field Mapping System for Deflection Yoke of Cathode-Ray Tube

  • Park, K.H.;Yoon, M.;Lee, S.M.;Joo, H.D.;Lee, S.D.;Yang, W.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.868-871
    • /
    • 2002
  • In this paper, we introduce an efficient three-dimensional magnetic field mapping system for a Deflection Yoke (DY) in Cathode-Ray Tube (CRT). A three-axis Hall probe mounted in a small cylindrical bar and three stepping motors placed in a nonmagnetic frame are utilized for the mapping. Prior to the mapping starts, the inner contour of DY is measured by a laser sensor to make a look-up table for inner shape of DY. Three-axis magnetic fields are then digitized by a three-dimensional Hall probe. The results of the mapping can be transformed to various output formats such as multipole harmonics of magnetic fields. Field shape in one, two and three-dimensional spaces can also be displayed. In this paper, we present the features of this mapping device and show some analysis results.

  • PDF

Evaluation of Topical Drug Containing Solcoseryl and Micronomicin on Surgical Wound in Mice

  • Chung, Kae-Jong;Chang, Man-Sik;Chun, Jong-Ok;Chun, Jae-Kwang;Kim, Sung-Chul;Park, Wahn-Soo;Lee, Hyang-Woo
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.23-27
    • /
    • 1994
  • Wound healing and antibacterial effects of solcoseryl-micronomicin combination gel on an open wound were studied in mice. A simple model was designed for assessing the effects. Using the model, we compared the efficacy of a combined topical gel of solcoseryl and micronomicin with those gels of solcoseryl or micronomicin alone. From the results of our experiment, the wound healing effect of open wounds by treatment with the combination gel was significantly enhanced when compared with those by treatment with solcoseryl gel or micronomicin gel alone. And the antibacterial effect of the combination gel was higher than those of solcoseryl gel or micronomicin gel alone.

  • PDF

Change the Properties of Amorphous Carbon Hardmask Film Prepared with the Variation of Process Parameters in Plasma Enhanced Chemical Vapor Depostion Systems

  • Kim, Seok Hwan;Yeo, Sanghak;Yang, Jaeyoung;Park, Keunoh;Hur, Gieung;Lee, Jaeho;Lee, Jaichan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.381.2-381.2
    • /
    • 2014
  • In this study the amorphous carbon films were deposited by PECVD at the substrate temperature range of 250 to $600^{\circ}C$, and the process conditions of higher and lower precursor flow rate, respectively. The temperature was a main parameter to control the density and mirco-structures of carbon films, and their's properties depended with the process temperatrue are changed by controlling precursor flow rate. The precursor feeding rate affect on the plasma ion density and a deposition reactivity. This change of film properties was obtained the instrinsic stress, FT-IR & Raman analysis, refractive index (RI) and ext. coef. (k) measured by ellipsometer. In the process conditions of lower and higher flow rate of precursor it had a different intrinsic stress as a function of the substrate temperature.

  • PDF

The Characteristics of Plasma Polymerized Carbon Hardmask Film Prepared by Plasma Deposition Systems with the Variation of Temperature

  • Yang, J.;Ban, W.;Kim, S.;Kim, J.;Park, K.;Hur, G.;Jung, D.;Lee, J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.381.1-381.1
    • /
    • 2014
  • In this study, we investigated the deposition behavior and the etch resistivity of plasma polymerized carbon hardmask (ppCHM) film with the variation of process temperature. The etch resistivity of deposited ppCHM film was analyzed by thickness measurement before and after direct contact reactive ion etching process. The physical and chemical properties of films were characterized on the Fourier transform infrared (FT-IR) spectroscope, Raman spectroscope, stress gauge, and ellipsometry. The deposition behavior of ppCHM process with the variation of temperature was correlated refractive index (n), extinction coefficient (k), intrinsic stress (MPa), and deposition rate (A/s) with the hydrocarbon concentration, graphite (G) and disordered (D) peak by analyzing the Raman and FT-IR spectrum. From this experiment we knew an optimal deposition condition for structure of carbon hardmask with the higher etch selectivity to oxide. It was shown the density of ppCHM film had 1.6~1.9 g/cm3 and its refractive index was 1.8~1.9 at process temperature, $300{\sim}600^{\circ}C$. The etch selectivity of ppCHM film was shown about 1:4~1:8 to undoped siliconoxide (USG) film (etch rate, 1300 A/min).

  • PDF

Development of Potassium Impregnated Carbon Absorbents for Indoor CO2 Adsorption (K계열 함침 탄소계 흡착제의 실내 저농도 이산화탄소 흡착성능 강화)

  • Jeong, Se-Eun;Wang, Shuang;Lee, Yu-Ri;Won, Yooseob;Kim, Jae-Young;Jang, Jae Jun;Kim, Hana;Jo, Sung-ho;Park, Young Cheol;Nam, Hyungseok
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.606-612
    • /
    • 2022
  • Relatively high indoor CO2 concentration (>1,000 ppm) has a negative impact on human health. In this work, indoor CO2 adsorbent was developed by impregnating KOH or K2CO3 on commercial activated carbon, named as KOH/AC and K2CO3/AC. Commercial activated carbon (AC) showed relatively high BET surface area (929 m2/g) whereas KOH/AC and K2CO3/AC presented lower BET surface area of 13.6 m2/g and 289 m2/g. Two experimental methods of TGA (2,000 ppmCO2, weight basis) and chamber test (initial concentration: 2,000 ppmCO2, CO2 IR analyzer) were used to investigate the adsorption capacity. KOH/AC and K2CO3/AC exhibited similar adsorption capacities (145~150 mgCO2/g), higher than K2CO3/Al+Si supports adsorbent (84.1 mgCO2/gsample). Similarly, chamber test also showed similar trend. Both KOH/AC and K2CO3/AC represented higher adsorption capacities (KOH/AC: 93.5 mgCO2/g K2CO3/AC: 94.5 mgCO2/gsample) K2CO3/Al+Si supports. This is due to the KOH or K2CO3 impregnation increased alkaline active sites (chemical adsorption), which is beneficial for CO2 adsorption. In addition, the regeneration test results showed both K-based adsorbents pose a good regeneration and reusability. Finally, the current study suggested that both KOH/AC and K2CO3/AC have a great potential to be used as CO2 adsorbent for indoor CO2 adsorption.

Insertion Mutation in HMG-CoA Lyase Increases the Production Yield of MPA through Agrobacterium tumefaciens-Mediated Transformation

  • Dong, Yuguo;Zhang, Jian;Xu, Rui;Lv, Xinxin;Wang, Lihua;Sun, Aiyou;Wei, Dongzhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1924-1932
    • /
    • 2016
  • Mycophenolic acid (MPA) is an antibiotic produced by Penicillium brevicompactum. MPA has antifungal, antineoplastic, and immunosuppressive functions, among others. ${\beta}-Hydroxy-{\beta}-methylglutaryl-CoA$ (HMG-CoA) lyase is a key enzyme in the bypass metabolic pathway. The inhibitory activity of HMG-CoA lyase increases the MPA biosynthetic flux by reducing the generation of by-products. In this study, we cloned the P. brevicompactum HMG-CoA lyase gene using the thermal asymmetric interlaced polymerase chain reaction and gene walking technology. Agrobacterium tumefaciens-mediated transformation (ATMT) was used to insert a mutated HMG-CoA lyase gene into P. brevicompactum. Successful insertion of the HMG-CoA lyase gene was confirmed by hygromycin screening, PCR, Southern blot analysis, and enzyme content assay. The maximum MPA production by transformants was 2.94 g/l. This was 71% higher than wild-type ATCC 16024. Our results demonstrate that ATMT may be an alternative practical genetic tool for directional transformation of P. brevicompactum.

Performance Analysis of Upgrading Process with Amine-Based CO2 Capture Pilot Plant

  • Kwak, No-Sang;Lee, Junghyun;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This study applied upgrades to the processes of a 10 MW wet amine $CO_2$ capture pilot plant and conducted performance evaluation. The 10 MW $CO_2$ Capture Pilot Plant is a facility that applies 1/50 of the combustion flue gas produced from a 500 MW coal-fired power plant, and is capable of capturing up to 200 tons of $CO_2$. This study aimed to quantitatively measure efficiency improvements of post-combustion $CO_2$ capture facilities resulting from process upgrades to propose reliable data for the first time in Korea. The key components of the process upgrades involve absorber intercooling, lean/rich amine exchanger efficiency improvements, reboiler steam TVR (Thermal Vapor Recompression), and lean amine MVR (Mechanical Vapor Recompression). The components were sequentially applied to test the energy reduction effect of each component. In addition, the performance evaluation was conducted with the absorber $CO_2$ removal efficiency maintained at the performance evaluation standard value proposed by the IEA-GHG ($CO_2$ removal rate: 90%). The absorbent used in the study was the highly efficient KoSol-5 that was developed by KEPCO (Korea Electric Power Corporation). From the performance evaluation results, it was found that the steam consumption (regeneration energy) for the regeneration of the absorbent decreased by $0.38GJ/tonCO_2$ after applying the process upgrades: from $2.93GJ/ton\;CO_2$ to $2.55GJ/tonCO_2$. This study confirmed the excellent performance of the post-combustion wet $CO_2$ capture process developed by KEPCO Research Institute (KEPRI) within KEPCO, and the process upgrades validated in this study are expected to substantially reduce $CO_2$ capture costs when applied in demonstration $CO_2$ capture plants.

A $LN_2$-cooled, Broadband cw CO Laser (액체질소 냉각형광대역 cw CO 레이저)

  • Kim, Y.P.;Choi, J.W.;Won, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.667-671
    • /
    • 1989
  • The CO laser is one of powerful light source for laser magnetic resonance spectroscopy in the mid-infrared region of the spectrum because of its wideband operational characteristics. In this work, a liquid nitrogen cooled cw CO laser is developed to allow broad-band operation from 5 to 8 ${\mu}m$. The design details will be presented.

  • PDF

Structure and Magnetic Properties of Sm-Co(x nm)/Co(6 nm) Multi-layered Nanocomposite Films

  • Yang, Choong-Jin;You, Cai-Yin;Zhang, Zhi-Dong
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.24-25
    • /
    • 2002
  • Tthe structure and magnetic properties of Sm-Co/co films treated at various annealing temperatures and times are reported, The effects of an externally applied magnetic field during annealing, were also investigated. These result is discussed in terms of magnetization reversal of nano grains which seems to compete with the exchange interaction occurring between the nano grains. (omitted)

  • PDF