• Title/Summary/Keyword: Co-inhibition

Search Result 1,380, Processing Time 0.032 seconds

Synthesis and Structure-Activity Relationships of Novel Compounds for the Inhibition of TNF-$\alpha$ Production

  • Park, Joon-Seok;Baik, Kyong-Up;Son, Ho-Jung;Lee, Jae-Ho;Lee, Se-Jong;Choi, Jae-Youl;Park, Ji-Soo;Yoo, Eun-Sook;Byun, Young-Seok;Park, Myung-Hwan
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.332-337
    • /
    • 2000
  • This study describes the synthesis, in vitro evaluation and molecular modeling study of novel compounds for the inhibition of TNF-$\alpha$production, Among these compounds, 2-[3-(cyclopentyloxy)-4-methoxyphenyl]-1-isoindolinone (9) was selected as a lead compound and its pyridine derivative 10 was more potent in activity and safer than rolipram.

  • PDF

Reactivity of Functional Food Substance in terms of Structure Analysis

  • Kwon, Dae-Young
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2003.11a
    • /
    • pp.46-46
    • /
    • 2003
  • Hypocholesterolemic peptide isolated from glycimin (11S protein) hydrolyzate by trypsin was purified and identified as LPYP and IAVPGEVA. To investigate the effects of phyiscal properties of side chains of the hypocholesterolemic activity, some of mutant peptides were designed and synthesized chemically. The structure related structures of each peptide were simulated and constructed and their conformations were observed by using spectropolarimeter. The hypocholesterolemic activities were monitored by assaying the inhibition of 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA reductase) in vitro and by the determination of cholesterol content in mice serum. For LPYP derivatives, Hypocholesterolemic activity was lost when hydrophobic leucine residue at N-terminus was not so critical for maintaining hypocholesterolemic activity. For idealogical design of hypocholesterolemic peptides, the structure of HMG-CoA reductase are shown and inhibition mechanism of some peptides or inhibitors will be presented. For IAVPGEVA derivative inhibition of HMG-CoA reductase has been studied. For detail study of hypocholesterolemic activity, kinetic study of inhibition of peptides on HMG-CoA reductase and structural view of ligand binding should be investigated.

  • PDF

Roles of cysteine residues in the inhibition of human glutamate dehydrogenase by palmitoyl-CoA

  • Son, Hyo Jeong;Ha, Seung Cheol;Hwang, Eun Young;Kim, Eun-A;Ahn, Jee-Yin;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.707-712
    • /
    • 2012
  • Human glutamate dehydrogenase isozymes (hGDH1 and hGDH2) have been known to be inhibited by palmitoyl-CoA with a high affinity. In this study, we have performed the cassette mutagenesis at six different Cys residues (Cys59, Cys93, Cys119, Cys201, Cys274, and Cys323) to identify palmitoyl-CoA binding sites within hGDH2. Four cysteine residues at positions of C59, C93, C201, or C274 may be involved, at least in part, in the inhibition of hGDH2 by palmitoyl-CoA. There was a biphasic relationship, depending on the levels of palmitoyl-CoA, between the binding of palmitoyl-CoA and the loss of enzyme activity during the inactivation process. The inhibition of hGDH2 by palmitoyl-CoA was not affected by the allosteric inhibitor GTP. Multiple mutagenesis studies on the hGDH2 are in progress to identify the amino acid residues fully responsible for the inhibition by palmitoyl-CoA.

CoMFA and CoMSIA on the Inhibition of Calcineurin-NFAT Signaling by Blocking Protein-Protein Interaction with N-(4-Oxo-1(4H)-naphthalenylidene)benzenesulfonamide Derivatives

  • Myung, Pyung-Keun;Park, Kyung-Yong;Sung, Nack-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1941-1945
    • /
    • 2005
  • To raises the possibility of designing effective inhibitors, 3D-QSAR for the inhibition of calcineurin-NFAT signaling by new N-(4-oxo-1(4H)-naphthalenylidene benzenesulfonamide derivatives as inhibitors of intracellular protein-protein interactions were studied using CoMFA and CoMSIA methodology. The three templates, N-(4-oxo-1(4H)-naphthalenylidene)benzenesulfonamide (A), benzenesulfonamide (B) and 4-oxo-1(4H)-naphthalenylidene (C) were selected to improve the statistic of the present 3D-QSAR models. The best models with combination of standard field in CoMFA, and steric field and electrostatic field in CoMSIA derived from the template, B and C, because most of the compounds tend not to be aligned in template A. From the based on the CoMFA and CoMSIA contour maps, the $R_1$ and $R_2$ groups on 4-oxo-1(4H) naphthalenylidene ring are steric favor. The ortho position on the benzenesulfonyl ring is steric disfavor and the meta position is steric favor. In addition, the oxygene atom of carbonyl group will have better inhibition activities as it has a negative charge favor. From these findings, we can conclude that the analyses of the contour maps provided insight into possible modification of molecules for effective inhibitiors.

Inhibition Effects of Some Amino Acids on the Corrosion of Cobalt in Hydrochloric Acid and Sulfuric Acid (염산과 황산 용액에서 코발트의 부식에 미치는 아미노산의 부식억제효과)

  • Park, Hyunsung;Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.5
    • /
    • pp.327-334
    • /
    • 2019
  • Inhibition effects of cysteine(Cys), methionine(Met), and histidine(His) on the corrosion of cobalt were investigated in deaerated 0.5 M HCl and 0.5 M $H_2SO_4$ solution. All the inhibition efficiency (IE) in the amino acids for the cobalt corrosion depended on the mixed inhibition. However, IE in the solution of $H_2SO_4$ depended more on the anodic and in the solution of HCl on the cathodic inhibition. Amino acid adsorption process on cobalt surface in the solution can be explained by modified Langmuir isotherm. The molecules of histidine dissolved in both of the solution were physically adsorbed due to the electrostatic interaction between the surface of {$Co-Cl^{-{\delta}}$} and the {$-NH_3{^+}$} or {$-NH^+=$} of His. However the other cases of adsorption in this investigation can be explained by chemical adsorption between the empty d-orbital of Co and the lone pair of electron in S-atom in Cys and Met.

A ROCK Inhibitor Blocks the Inhibitory Effect of Chondroitin Sulfate Proteoglycan on Morphological Changes of Mesenchymal Stromal/Stem Cells into Neuron-Like Cells

  • Lim, Hee-Suk;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.447-453
    • /
    • 2013
  • Chondroitin sulfate proteoglycan (CSPG) inhibits neurite outgrowth of various neuronal cell types, and CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK pathway. Mesenchymal stromal/stem cells (MSCs) have the potential to differentiate into neuron-like cells under specific conditions and have been shown to differentiate into neuron-like cells by co-treatment with the ROCK inhibitor Y27632 and the hypoxia condition mimicking agent $CoCl_2$. In this study, we addressed the hypothesis that a ROCK inhibitor might be beneficial to regenerate neurons during stem cell therapy by preventing transplanted MSCs from inhibition by CSPG in damaged tissues. Indeed, dose-dependent inhibition by CSPG pretreatment was observed during morphological changes of Wharton's jelly-derived MSCs (WJ-MSCs) induced by Y27632 alone. The formation of neurite-like structures was significantly inhibited when WJ-MSCs were pre-treated with CSPG before induction under Y27632 plus $CoCl_2$ conditions, and pretreatment with a protein kinase C inhibitor reversed such inhibition. However, CSPG treatment resulted in no significant inhibition of the WJ-MSC morphological changes into neuron-like cells after initiating induction by Y27632 plus $CoCl_2$. No marked changes were detected in expression levels of neuronal markers induced by Y27632 plus $CoCl_2$ upon CSPG treatment. CSPG also blocked the morphological changes of human bone marrow-derived MSCs into neuron-like cells under other neuronal induction condition without the ROCK inhibitor, and Y27632 pre-treatment blocked the inhibitory effect of CSPG. These results suggest that a ROCK inhibitor can be efficiently used in stem cell therapy for neuronal induction by avoiding hindrance from CSPG.

Screening of Nine Herbs with Biological Activities on ACE Inhibition, HMG-CoA Reductase Inhibition, and Fibrinolysis (9종의 허브류로부터 ACE 저해활성, HMG-CoA reductase 저해활성 및 혈전용해활성에 대한 검색)

  • Kwon, Eun-Kyung;Kim, Young-Eon;Lee, Chang-Ho;Kim, Hae-Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.691-698
    • /
    • 2006
  • The purpose of this study was to investigate how herb extracts may improve blood circulation. Twenty-six extracts from nine different herbs (marjoram, lavender, dill, rosemary, hyssop, rose, lemon balm, pineapple sage, and echinacea) were evaluated for their anti-hypertensive effects via angiotensin I converting enzyme (ACE) inhibition. Their cholesterol-lowering effects via hydroxy-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibition and their fibrinolytic activity via fibrin-plate method were also evaluated. Both water extraction of rose flowers and 70% EtOH extraction of pineapple sage leaves effectively reduced the ACE activity with inhibition rates of 133.8% and 91.2%, respectively. Similarly, both water and 70% EtOH extracts of rose flowers strongly inhibited the enzymatic activity of HMG-CoA reductase by 48.9% and 80.5%, respectively. Water and 70% EtOH extracts of rose flowers also showed relatively high fibrinolytic activity. Based on these observations, rose flower extracts can be developed as a functional tool for use in the improvement of blood circulation.

Antimicrobial Activities of Nano Metal Hybrid Materials against the Microorganisms Isolated from Cucurbit Seeds (나노 금속복합체의 박과 작물 종자 분리균에 대한 항균효과)

  • Kim, Sang Woo;Gwon, Byeong Heon;Ju, Han Jun;Adhikari, Mahesh;Park, Mi-ri;Song, Seok-Kyun;Lee, Youn Su
    • Research in Plant Disease
    • /
    • v.25 no.4
    • /
    • pp.179-187
    • /
    • 2019
  • This study was carried out to test the antimicrobial activities of nano metal hybrid materials produced by plasma technologies (radio frequency-thermal plasma system and direct current sputtering system) against microbes isolated from cucurbit (watermelon, pumpkin, and gourd) seeds. Eight different nano metal hybrid materials and four carriers were tested against five different fungal and ten different bacterial isolates in vitro. Among the tested nano metal hybrid material, Brass/CaCO3 (1,000 ppm) exhibited 100% antimicrobial effect against all the five tested fungi. However, nano metal hybrid material Brass/CaCO3 (1,000 ppm) inhibited only four bacterial isolates, Weissella sp., Rhodotorula mucilaginosa, Burkholderia sp., and Enterococcus sp. at 100% level, and did not inhibited other six bacterial isolates. Nano metal hybrid material graphite-nickel (G-Ni) showed 100% inhibition rate against Rhizopus stolonifer and 52.94-71.76% inhibition rate against four different fungal isolates. Nano metal hybrid material G-Ni did not show any inhibition effects against tested ten bacterial isolates. In summary, among the tested eight different nano metal hybrid materials and four carriers, Brass/CaCO3 showed inhibition effects against five fungal isolates and four bacterial isolates, and G-Ni showed variable inhibition effects (52.94-100%) against five fungal isolates and did not show any inhibition effects against all the bacterial isolates.

New Anti-aging & Moisturizer Ingredients of Exopolysaccharides by Grifola frondosa

  • Bae, Jun-Tae;Lee, Bum-Chun;Yoon, Eun-Jeong;Kim, Jin-Hwa;Lee, Dong-Hwan;Pyo, Hyeong-Bae;Choe, Tae-Boo
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.35-49
    • /
    • 2003
  • In this study, in an attempt to search for functional cosmetic ingredients from higher fungal, we have produced exopolysaccharides (GF-l, approximately carbohydrate 75%, protein 25%) and polysaccharide (GF-2) of mycelium extract, by submerged culture of Grifolafrondosa. For applications in anti-aging cosmetic field, we investigated the diverse biological activities. Antioxidant activity and inhibition of Matrixmetalloproteinases (MMPs) were investigated enzymatic assays by measuring the superoxide scavenging activity using xanthine-xanthine oxidase system and the proteolytic activity of MMPs using EnzChek Collagenase/Gelatinase kits, respectively. GF-l polysacchairde showed inhibition of superoxide radical by 90% at a concentration of 0.2% (w/v) and inhibition of collagenase by 45% at 0.2% (w/v). GF-2 polysaccharide of mycelium extract also exhibited good antioxidant activity. However, MMPs inhibition activity was relatively lower level compared to GF-l polysaccharides. The treatment of human dermal fibroblast (HDF) with GF-l and GF-2 polysaccharides increased the proliferation of fibroblast by approximately 23-25% at a concentration of 0.5% (w/v), also showed collagen synthesis increase in HDF by about 50% at 0.5% (w/v) compared to that of untreated control. We also report the moisturizing effects of polysaccharides in cosmetic products (O/W emulation) and its own ingredient, in vitro and in vivo. The GF-1 polysaccharide showed higher moisturizing ability than sodium hyaluronate, which is the most commonly used moisturizers ingredient. These results suggest the GF-l polysaccharide, protein-bound polysaccharide, may be used as an ingredient for new moisturizing and anti-aging cosmeceuticals.

  • PDF

Assessment of Lipopolysaccharide-binding Activity of Bifidobacterium and Its Relationship with Cell Surface Hydrophobicity, Autoaggregation, and Inhibition of Interleukin-8 Production

  • Park, Myeong-Soo;Kim, Min-Jeong;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1120-1126
    • /
    • 2007
  • This study was performed to screen probiotic bifidobacteria for their ability to bind and neutralize lipopolysaccharides (LPS) from Escherichia coli and to verify the relationship between LPS-binding ability, cell surface hydrophobicity (CSH), and inhibition of LPS-induced interleukin-8 (IL-8) secretion by HT-29 cells of the various bifidobacterial strains. Ninety bifidobacteria isolates from human feces were assessed for their ability to bind fluorescein isothiocyanate (FITC)-labeled LPS from E. coli. Isolates showing 30-60% binding were designated LPS-high binding (LPS-H) and those with less than 15% binding were designated LPS-low binding (LPS-L). The CSH, autoaggregation (AA), and inhibition of LPS-induced IL-8 release from HT-29 cells of the LPS-H and LPS-L groups were evaluated. Five bifidobacteria strains showed high levels of LPS binding, CSH, AA, and inhibition of IL-8 release. However, statistically significant correlations between LPS binding, CSH, AA, and reduction of IL-8 release were not found. Although we could isolate bifidobacteria with high LPS-binding ability, CSH, AA, and inhibition of IL-8 release, each characteristic should be considered as strain dependent. Bifidobacteria with high LPS binding and inhibition of IL-8 release may be good agents for preventing inflammation by neutralizing Gram-negative endotoxins and improving intestinal health.