• Title/Summary/Keyword: Co-fired

Search Result 395, Processing Time 0.028 seconds

Effect of Boiler Operating Conditions on the Generation of Unburned Carbon in Anthracite Co-fired 500 MW Thermal Power Plant (무연탄 혼소 500 MW 석탄화력발전소에서 보일러 운전조건이 미연탄소 발생에 미치는 영향)

  • Nam, Jeong-Chul;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.14 no.3
    • /
    • pp.35-41
    • /
    • 2018
  • Considering the recent government policy toward North Korea and situation of power facilities in North Korea, it will be necessary to prepare for the consumption of the anthracite coal from Korea in coal-fired power plants. In this study, the anthracite co-fired tests in 500 MW thermal power plants were conducted with varying the main operation conditions, such as anthracite injection position in the boiler, coal fineness and combustion air flow, to investigate the effects on the generation of unburned carbon. It was confirmed that the generation of unburned carbon was remarkably reduced when the anthracite coal was injected into the boiler low burner with a relatively long residence time in the main combustion region, and that the increase of the coal fineness proportional to the combustion reaction surface area also reduces the generation of unburned carbon. An increase in the combustion air flow, which increase the combustion reactivity, also contributes to the reduction of unburned carbon. It is possible to maintain the unburned carbon generation below 5 % of the ash recycling quality by controlling the above operating conditions for the given mixing rate of anthracite, and the priority of changing the operating conditions within the test range is the highest for anthracite coal injection position.

  • PDF

Characteristic studies of coal power plants ash sample and monitoring of PM 2.5

  • Thriveni., T;Ramakrishna., CH;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.45-56
    • /
    • 2017
  • Coal power plants produce electricity for the nation's power grid, but they also produce more hazardous air emissions than any other industrial pollution sources. The quantity is staggering, over 386,000 tons of 84 separate hazardous air pollutants spew from over 400 plants in 46 states. In South Korea also, annual coal ash generation from coal-fired power plants were about 6 million tons in 2015. Pollutants containing particulate matter 10, 2.5 (PM10, PM2.5), heavy metals and dioxins from coal-fired power plant. The emissions threaten the health of people who live near these power plants, as well as those who live hundreds of miles away. These pollutants that have long-term impacts on the environment because they accumulate in soil, water and animals. The present study is to investigate the physical and chemical characteristics of coal-fired power plant fly ash and bottom ash contains particulate matter, whose particulate sizes are lower than $PM_{10}$ and $PM_{2.5}$ and heavy metals. There are wide commercial technologies were available for monitoring the PM 2.5 and ultra-fine particles, among those carbonation technology is a good tool for stabilizing the alkaline waste materials. We collected the coal ash samples from different coal power plants and the chemical composition of coal fly ash was characterized by XRF. In the present laboratory research approach reveals that potential application of carbonation technology for particulate matter $PM_{10}$, $PM_{2.5}$ and stabilization of heavy metals. The significance of this emerging carbonation technology was improving the chemical and physical properties of fly ash and bottom ash samples can facilitate wide re use in construction applications.

Calculation of CO2 Emission and Generator Output of Thermal Power Plant (화력발전소의 발전출력과 $CO_2$ 대기배출량 계산)

  • Lim, Jeong-Kyun;Lee, Sang-Joong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.417-420
    • /
    • 2007
  • This paper proposes a method to calculate the amount of the CO2 emission w.r.t. generator MW output using the input-output coefficients of the thermal power plants. A calculation of CO2 emission for an LNG fired combined cycle power plant is demonstrated.

  • PDF

Calculation of CO2 Emission for Fossil-Fired Thermal Power Plant considering Coal-Oil Mix Rate (혼소율을 고려한 화력 발전소의 CO2 대기배출량 계산)

  • Lee, Sang-Joong;Kim, Soon-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.67-72
    • /
    • 2010
  • G8 summit meeting held in July 2008 decided to set up a long-term goal, by 2050, reducing the world greenhouse emissions by half of those emitted in 1990. In November 2009, the Government announced to reduce the national $CO_2$ emission by 30[%] of BAU by 2020. Electric power industries in Korea produce most of their electricity by burning fossil fuels, and emit approximately 28[%] of national $CO_2$ emissions. Monitoring the $CO_2$ emissions. Monitoring the $CO_2$ emission of electric power plants is very important. This paper presents a method to calculate the hourly $CO_2$ emission for a thermal power plant burning mixture of coal and oil using the performance test data and coal-oil mix rate. An example of $CO_2$ emission calculation is also demonstrated.

Warpage of Co-fired High K/Low K LTCC Substrate (고유전율/저유전율 LTCC 동시소성 기판의 휨 현상)

  • Cho, Hyun-Min;Kim, Hyeong-Joon;Lee, Chung-Seok;Bang, Kyu-Seok;Kang, Nam-Kee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.77-82
    • /
    • 2004
  • In this paper, warpages of heterogeneous LTCC substrates comprised of high K/low K hi-layered structure were investigated. The effect of glass content in high K LTCC layer on the warpage of substrate during co-firing process was examined. Shrinkage and dielectric properties of high K and low K green sheets were measured. In-situ camber observation by hot stage microscopy showed different camber development of heterogeneous LTCC substrates according to glass content in high K green sheet. High K green sheet containing $50\%$ glass was matched to low K green sheet in the shrinkage. Therefore, LTCC substrate of Low K/High K+$50\%$ glass structure showed flat surface after sintering.

  • PDF

Performance and Economic Analysis of 500 MWe Coal-Fired Power Plant with Post-Combustion $CO_{2}$ Capture Process (연소 후 $CO_{2}$ 포집공정이 적용된 500MWe 석탄화력발전소의 성능 및 경제성평가)

  • Lee, Ji-Hyun;Kim, Jun-Han;Lee, In-Young;Jang, Kyung-Ryoung;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.244-249
    • /
    • 2011
  • In this study, performance and economic analysis of 500 MWe coal-fired power plant with $CO_{2}$ capture process was performed. For this purpose, chemical absorption method which is commercially available and most suitable for thermal power plant was studied and a criteria for technical and economic assessment of power plants suggested by IEA Greenhouse Gas R&D Programme was used. And we performed the sensitivity analysis focused on regeneration energy which exceed half of the total capture energy. Based on MEA(Monoethanoleamine) as a main chemical solvent and 3.31 GJ/ton$CO_{2}$ regeneration energy in the stripper, net power efficiency was reduced from 41.0% (no capture) to 31.6%(with capture) and the cost of $CO_{2}$ avoided was estimated 43.3 $/ton$CO_{2}$. And in case of 2.0 GJ/ton$CO_{2}$ regeneration energy, the cost of $CO_{2}$ avoided was calculated as 36.7 $/ton$CO_{2}$.