• Title/Summary/Keyword: Co-fire

Search Result 936, Processing Time 0.027 seconds

Performance Evaluation of a Smart CoAP Gateway for Remote Home Safety Services

  • Kim, Hyun-Sik;Seo, Jong-Su;Seo, Jeongwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3079-3089
    • /
    • 2015
  • In this paper, a smart constrained application protocol (CoAP)-based gateway with a border router is proposed for home safety services to remotely monitor the trespass, fire, and indoor air quality. The smart CoAP gateway controls a home safety sensor node with a pyroelectric infrared motion sensor, a fire sensor, a humidity and temperature sensor, and a non-dispersive infrared CO2 sensor and gathers sensing data from them. In addition, it can convert physical sensing data into understandable information and perform packet conversion as a border router for seamless connection between a low-power wireless personal area network (6LoWPAN) and the Internet (IPv6). Implementation and laboratory test results verify the feasibility of the smart CoAP gateway which especially can provide about 97.20% data throughput.

Fire and Evacuation Analysis in Environmental Energy Facilities (환경에너지 시설내 화재 및 피난해석)

  • Jeon, Yong-Han;Kim, Jong-Yoon
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.84-90
    • /
    • 2019
  • In this study, a fire and evacuation inside an electronic equipment room in environmental energy facilities were conducted and evaluated using a numerical analysis method. In the fire simulation, the visual distance, temperature distribution, and CO concentration distribution were analyzed using FDS. Based on the results, the Pathfinder program, which is an evacuation simulation, was used to calculate the evacuation time of the occupants and derive an evacuation safety evaluation. As a result, the Available safe Egress time (ASET) of P-01 and P-05 was 203.3 and 398.6 s, respectively. For the Required safety Egress time (RSET) results, all evacuees were evacuated at all points and the safety of the evacuee was secured this simulation showed that the safety evaluation is based on the non - operation of the fire - fighting equipment to improve the safety, making it possible to secure better evacuation safety performance owing to the fire of other fire - fighting facilities.

Development of a Single Fire Alarm System of House Based on Wireless Communication (무선 감응식 주택 단독 화재 경보 시스템 개발)

  • Park, Hyeon-Ho;Cho, Seong-Jin;Park, Byeong-Hwa;Heo, Jeong-Hun;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1017-1022
    • /
    • 2018
  • In this paper, a single house fire alarm device, which can solve the problem of fire perception at midnight time and the attenuation of alarm signal due to the wall between rooms based on the wireless communication, was developed. The radio controlled fire alarm device was designed to allow fire to be recognized quickly and accurately by monitoring the temperature and $CO_2$ concentration based on the temperature sensor and gas sensor, by detecting the fire in the house and by transmitting the fire alarm to the individual wireless alarms of other rooms using the wireless transmission/reception module. Using the Arduino as a main control device, three independent fire alarm device prototypes were made, and their usefulness was verified by the correct operations in temperature and gas tests.

Learning algorithm for flame pattern recognition (화재 패턴 인식을 위한 학습 알고리즘)

  • Kang, Suk Won;Lee, Soon Yi;Lee, Tae Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.521-525
    • /
    • 2009
  • In this paper, we introduce fire detection system and software learning algorithm that recognize fire patterns. Flame patterns means that periodical and consistent pattern about general conception of fire, and to process it with the definition. Learning algorithm for flame pattern recognition that we propose is the method which is faster and more exactly than existing algorithm. Also, we trying to elicit the method through experiment result and by applying it, we show the validity of an early fire warning system.

  • PDF

The Study of Simulation for Reproduce Accidents of Narrow Dwelling Space (협소 거주공간 사고 재현을 위한 시뮬레이션 연구)

  • Lee, Changwoo;Choi, Beakyoul;Kim, Jinsung;Cho, Yongsun;Yoo, Juyoul
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.3
    • /
    • pp.210-218
    • /
    • 2016
  • In this study, the fire analysis program FDS and Pathfinder was used to analysis a simulated accidental fire of a narrow dwelling space as a test bed. The results showed that the evacuation time of the H form internal building structure was the fastest at 285 seconds. In addition, when the automatic sprinkler system functioned with the entrances closed, the temperature distribution was lower and the visible smoke density was reduced.

A Study on the Development of AI-Based Fire Fighting Facility Design Technology through Image Recognition (이미지 인식을 통한 AI 기반 소방 시설 설계 기술 개발에 관한 연구)

  • Gi-Tae Nam;Seo-Ki Jun;Doo-Chan Choi
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.883-890
    • /
    • 2022
  • Purpose: Currently, in the case of domestic fire fighting facility design, it is difficult to secure highquality manpower due to low design costs and overheated competition between companies, so there is a limit to improving the fire safety performance of buildings. Accordingly, AI-based firefighting design solutions were studied to solve these problems and secure leading fire engineering technologies. Method: Through AutoCAD, which is widely used in existing fire fighting design, the procedures required for basic design and implementation design were processed, and AI technology was utilized through the YOLO v4 object recognition deep learning model. Result: Through the design process for fire fighting facilities, the facility was determined and the drawing design automation was carried out. In addition, by learning images of doors and pillars, artificial intelligence recognized the part and implemented the function of selecting boundary areas and installing piping and fire fighting facilities. Conclusion: Based on artificial intelligence technology, it was confirmed that human and material resources could be reduced when creating basic and implementation design drawings for building fire protection facilities, and technology was secured in artificial intelligence-based fire fighting design through prior technology development.

Combustion Characteristics of the Pinus Rigida and Castanea Savita Using Cone Calorimeter (콘칼로리미터를 이용한 소나무와 밤나무의 연소특성)

  • Chung, Yeong-Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.319-323
    • /
    • 2009
  • One of the limitation of wood as building material is its flammability. The purpose of this paper is to examine the combustion properties of the pinus rigida and castanea savita which are grown in Korea and meet the desirable characteristics for use of construction materials. The cone calorimeter (ISO 5660-1) was used to determine the heat release rate (HRR) and fire smoke index, as well as CO and $CO_2$ production and smoke obscuration. The $HRR_{mean}$ of the castanea savita at $50kW/m^2$ was $160.7kW/m^2$ in comparison with $150.7kW/m^2$ for the pinus rigida. Castanea savita showed an increase of retardant properties attributed to char formation compared with that of pinus rigida. The castanea savita has high $CO_{peak}$ yield and high CO/$CO_2$ yield compared with that of pinus rigida.

A Development of Assessment Model for Maintenance of Type R Fire Alarm System in the Building

  • Lee, Su-Kyung;Yoo, Sang-Bin;Nam, Yang-Won
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.633-640
    • /
    • 1997
  • Type R fire alarm is required intelligent buildings and height buildings which was based on automatic system. But in Korea, maintenance of fire alarm system is very poor. In this study, we developed assessment model for the type R fire alarm system which was assessed by using 96 checklist items. The assessment model was tested through the actual 4 buildings with type R fire alarm system. It is shown that present model can be applied for the assessment of all buildings through the examination of the suitability of assessment model by actual assessment. Also, it was made easily fire manager to carry out checklist for type R fire alarm system in buildings.

  • PDF

Numerical analysis to determine fire suppression time for multiple water mist nozzles in a large fire test compartment

  • Ha, Gaghyeon;Shin, Weon Gyu;Lee, Jaiho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1157-1166
    • /
    • 2021
  • In this study, a numerical sensitivity analysis was performed to determine the fire suppression time for a large number of water mist nozzles in a large fire compartment. Fire simulations were performed using FDS (Fire dynamics simulator) 6.5.2 under the same condition as the test scenario 5 of the International Maritime Organization (IMO) 1165 test protocol. The sensitivities of input parameters including cell size, extinguishing coefficient (EC), droplets per second (DPS), and peak heat release rate (HRR) of fuel were investigated in terms of the normalized HRR and temperature distribution in the compartment. A new method of determining the fire suppression time using FDS simulation was developed, based on the concept of the cut-off time by cut-off value (COV) of the heat release rate per unit volume (HRRPUV) and the cooling time by the HRR cooling time criteria value (CTCV). In addition, a method was developed to determine the average EC value for the simulation input, using the cooling time and cut-off time.