• Title/Summary/Keyword: Co-ferrite

Search Result 365, Processing Time 0.033 seconds

Nanoparticulate Co-Ferrite Thin Films on Glass Substrate Prepared by Sol-Gel Method (유리기판에 sol-gel법으로 제조된 나노입자 Co-ferrite 박막의 특성)

  • 오영제;최현석;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.425-431
    • /
    • 2000
  • Cobalt ferrite thin films on Corming glass substrate were fabricated by a sol-gel method. Cobalt ferrite thin films with the grain size of 20-35 nm and thickness of 50nm were obtained. Rapid thermal annealing (RTA) and Annealing processes were adopted for comparison of characteristics of the films. Coercivity values were changed with thermal condition and magnetization values were increased as a function of soaking time. With prolonged soaking time, however, it was decreased because of the diffusion of cations from the glass substrate. The RTA process in preparation of cobalt ferrite thin film was the effective way to prevent and to form a single spinel phase in reduced soaking time. The film heated at 600$^{\circ}C$ for 30 minutes by RTA had coercivity of 2,600 Oe, saturation magnetization 460 emu/㎤, and Mr$.$$\delta$ of 1.43 memu/$\textrm{cm}^2$.

  • PDF

Effects of $SiO_2$ and Seed on Ba-ferrite Synthesized by Molten Salt (용융염법으로 합성한 Ba-ferrite의 $SiO_2$ 및 Seed 첨가 효과)

  • 김영근;이승관;김현식;오영우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.326-329
    • /
    • 1996
  • In order to synthesize Ba-ferrite fine particles by molten salt method and inhibit the abnormal grain growth of sintered specimen, KCI anti NaCl were added to basic composition to 50% by weight, and added 1 male% of $SiO_2$ to control the shape of Ba-ferrite particles. $H_{c}$ and $M_{r}$ were decreased when F $e^{3+}$ was substituted with $Co_{2+}$ and $Ti_{4+}$ from x=0 to x=1.0 in $BaFe_{12-2x}$ $Ti_{x}$ $Co_{x}$ $O_{19}$ , and 1 mole% $SiO_2$ increased the size but shortened c-axis of hexagonal ferrite. Seeds added in Ba-ferrite particle effected inhibition of abnormal grain growth during sintering.ing.g.

  • PDF

The Effects of Substituted $Co^{+2}$ and $Ti^{+4}$ Cations on Magnetic Properties and Particle Characteristics of Ba-Ferrite Powder for Use in High Density Magnetic Recording (고밀도 자기기록용 Ba-Ferrite 분말의 자기적 물성과 입자특성에 미치는 $Co^{+2}$$Ti^{+4}$의 효과)

  • 홍양기;박상준;정홍식
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.275-280
    • /
    • 1995
  • The sites for $Fe^{+3}$ are partly substituted by $Co^{+2}$ and $Ti^{+4}$ cations to control coercivity of Ba-ferrite particles for use in high density magnetic recording. The substituted $Co^{+2}$ cation has very much different effects on magnetic properties and particle characteristics from that $Ti^{+4}$ cation has. The decrease in the coercivity with the $Co^{+2}$ substitution is attributed to the formation of excessive spinel-block(S-block) in pure Ba-ferrite crystal, while saturation magnetization is increased and the distributions of coercivity and particle size become broad. The substitution with the $Ti^{+4}$ decreases the sauration magnetization, but has less effect on a change in coercivity than the $Co^{+2}$. The $Ti^{+4}$ acts as a nucleation agent in amorphous phase of formulated compound, and consequently particle size and aspect ratio are decreased. Furthermore, the enhancement of substitution of the $Co^{+2}$ for the $Fe^{+3}$ sites in rhombohedral-block(R-block) by the $Ti^{+4}$ retards the nucleation of spinel phase of Ba-ferrite, which results in uniform magnetic properties of Ba-ferrite particles. It is suggested that the contents of the cations to be substituted for the $Fe^{+3}$ sites are optimized on the bases of magnetic properties and particle characteristics rather than on the base of electrical charge balance.

  • PDF

The Effect of Ba and Fe Concentration on Soft Magnetic Properties of Z-Type Barium Ferrite (Z-Type 바리움 페라이트 분말의 연자성 특성에 미치는 Ba 및 Fe 농도의 영향)

  • Cho, Kwang-Muk;Nam, In-Tak
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.1
    • /
    • pp.12-16
    • /
    • 2009
  • Z-type barium ferrite [($Ba_{3}Co_{0.8}Zn_{1.2}Fe_{24}O_{41}$, $Ba_{3+{\delta}}Co_{0.8}Zn_{1.2}Fe_{24}O_{41}$ ${\delta}$ = 3, 5, 7, 13 wt%. $Ba_{3}Co_{0.8}Zn_{1.2}Fe_{24+{\delta}}O_{41}$ ${\delta}$ = 5, 7, 10 wt% )] were synthesized using co-precipitation method. The microstructure and magnetic properties of synthesized particles were investigated. In all prepared particles M-type Ba ferrite is identified with Z-type Ba ferrite together. It is found that particles having 7 wt% for Ba and 5 wt% for Fe excess addition revealed high saturation magnetization, respectively. All synthesized particles showed relatively high coercivity for device application. This result may be attributed to the contribution of M-type Ba ferrite. Ba and Fe excess addition was not affected to the structural change of CoZnZ Ba ferrite. The certain amount of excess additions of Ba and Fe and the 2 step heat-treatment may be beneficial to the improvement of soft magnetic properties of Z-type barium hexa-ferrite

The Properties of Mn, Ni, and Al Doped Cobalt Ferrites Grown by Sol-Gel Method

  • Choi, Seung Han
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.371-375
    • /
    • 2018
  • The manganese-, nickel-, and aluminum-doped cobalt ferrite powders, $Mn_{0.2}Co_{0.8}Fe_2O_4$, $Ni_{0.2}Co_{0.8}Fe_2O_4$, and $Al_{0.2}CoFe_{1.8}O_4$, are fabricated by the sol-gel method, and the crystallographic and magnetic properties of the powders are studied in comparison with those of $CoFe_2O_4$. All the ferrite powders are nano-sized and have a single spinel structure with the lattice constant increasing in $Mn_{0.2}Co_{0.8}Fe_2O_4$ but decreasing in $Ni_{0.2}Co_{0.8}Fe_2O_4$ and $Al_{0.2}CoFe_{1.8}O_4$. All the $M{\ddot{o}}ssbauer$ spectra are fitted as a superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The values of the magnetic hyperfine fields of $Ni_{0.2}Co_{0.8}Fe_2O_4$ are somewhat increased in the A and B sites, while those of $Mn_{0.2}Co_{0.8}Fe_2O_4$ and $Al_{0.2}CoFe_{1.8}O_4$ are decreased. The variation of $M{\ddot{o}}ssbauer$ parameters is explained using the cation distribution equation, superexchange interaction and particle size. The hysteresis curves of the ferrite powders reveal a typical soft ferrite pattern. The variation in the values of saturation magnetization and coercivity are explained in terms of the site distributions, particle sizes and the spin magnetic moments of the doped ions.

Magnetic Properties of Sr-ferrite Powders via Modified Low Temperature Co-spray Roasting Process (저온 분무 열분해법으로 제조된 Sr-ferrite의 자기특성)

  • 김효준;조태식;남효덕;양충진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.931-939
    • /
    • 1998
  • Preparation of the hexagonal Sr-ferrite powsers with high performance by co-spraying precusor of the FeCl$_2$+SrCO$_3$ at a low temperature was proved as a cost =-effective method. The co-spray roasting was carried out in the temperature range of 300~$700^{\circ}C$ after SrCO$_3$ powders were mixed into 12FeCi$_2$.4$H_2O$ liquor. By this low temperature roasting method fine particles of multi-phased FeO$_2$+SrCO$_3$ were formulated. Powders calcined at 105$0^{\circ}C$ for 1 hour show the best magnetic property of M\ulcorner=69.96 emu/g, M\ulcorner=36.98 emu/g, and \ulcornerH\ulcorner=4.31 Oe. This calcining temperature is lower than that of the conventional dry method by 10$0^{\circ}C$.

  • PDF

Properties of ba-ferrite Particles Synthesized by Molten Salt Method (용융염법으로 합성한 Ba-ferrite 입자의 특성)

  • 오영우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.545-550
    • /
    • 2000
  • In order to synthesize Ba-ferrite particles by molten salt method KCl and NaCl were added to basic composition to 50% by weight. X was varied from 0.0 to 1.0 to control the magnetic properties in $BaFe_{12-2x}$/ $Co_{x}$ / $Ti_{x}$ / $O_{19}$ and 1 mol% of $SiO_2$was added to control the aspect ratio of hexagonal platelets. And the effects of reaction temperatures were examined by varying the temperature from 85$0^{\circ}C$ to 120$0^{\circ}C$ with 5$0^{\circ}C$ intervals. Eutectic composition of NaCl and KCl lowered the crystallizing temperature of Ba-ferrite in molten salts than using KCl and NaCl separatly. The morphology of resulting Ba-ferrite particles was clearly hexagonal-shaped plates. $H_{c}$ and $M_{r}$ were decreased when F $e^{3+}$ was substitued with $Co^{2+}$ and $Ti^{4+}$ from x=0 to x=1.0 in $BaFe_{12-2x}$/ $Co_{x}$ / $Ti_{x}$ / $O_{19}$ . Adding 1mol% $SiO_2$in molten salt method increased the size but shortened c-axis of the hexagonal ferrites and this result is an opposite phenomenon compared with the result in solid-statge reaction.n.ion.n.

  • PDF

Magnetoelectric Effect in$CoFe_2O_4-PZT$Composites ($CoFe_2O_4-PZT$ 복합체의 Magnetoelectric 효과)

  • 최임구;권순주;박수현;정윤희
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.6
    • /
    • pp.285-292
    • /
    • 1997
  • We have studied magnetoelectric effect with cobalt ferrite-Pb(Zr, Ti) $O_3$ composites made by solid state reaction. The maximum magnetoelectric voltage coefficient, $(dE/ dH)_{max}$, increased with longer sintering time and higher volume fraction of the cobalt ferrite. The magnetic field for $(dE/ dH)_{max}$ became lower with increasing the sintering time and decreasing the volume fraction of the cobalt ferrite. The phenomena were explained in terms of grain size change, mechanical coupling efficiency, easiness of magnetization and polarization. We obtained the highest magnetoelectric voltage coefficient of 0.174V/cm-Oe, which is about 30% higher than the best value reported.

  • PDF

Interfacial Layer and Thermal Characteristics in Ni-Zn-Cu Ferrite and Pb(Fe1/2Nb1/2)O3 for the Low Temperature Co-sintering (저온 동시소결을 위한 Ni-Zn-Cu 폐라이트와 Pb(Fe1/2Nb1/2)O3에서의 열적 거동 및 계면층 특성)

  • Song, Jeong-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.873-877
    • /
    • 2007
  • In order to apply a complex multilayer chip LC filter, this study has estimated the interfacial reaction and coupling properties of dielectric materials $Pb(Fe_{1/2}Nb_{1/2})O_3$ and Ni-Zn-Cu ferrite materials through low-temperature co-sintering (LTCS). PFN powders were fabricated using double calcinated at $700^{\circ}C$ and then $850^{\circ}C$. While the perovskite phase rate was found to be 91 %, after heat treatment at $900^{\circ}C$ for 6h, the perovskite phase rate and density exhibited a value of 100 % and 7.46$g/cm^3$, respectively. The PFN/Ni-Zn-Cu ferrite, PFN/CUO (or $Pb_2Fe_2O_5$) and ferrite/CuO (or $Pb_2Fe_2O_5$) were mechanically coupled through interfacial reactions after the specimen was co-sintered at $900^{\circ}C$ for 6 h. No intermediate layer exists for the mutual coupling reaction. This result indicates the possibility of low-temperature co-sintering without any interfacial reaction layer for a multilayer chip LC filter.