• 제목/요약/키워드: Co-expression

검색결과 2,436건 처리시간 0.036초

Effects of Castration on Expression of Lipid Metabolism Genes in the Liver of Korean Cattle

  • Baik, Myunggi;Nguyen, Trang Hoa;Jeong, Jin Young;Piao, Min Yu;Kang, Hyeok Joong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권1호
    • /
    • pp.127-134
    • /
    • 2015
  • Castration induces the accumulation of body fat and deposition of intramuscular fat in Korean cattle, resulting in improved beef quality. However, little is known about the metabolic adaptations in the liver following castration. To understand changes in lipid metabolism following castration, hepatic expression levels of lipid metabolism genes were compared between Korean bulls and steers. Steers had higher (p<0.001) hepatic lipids contents and higher (p<0.01) mRNA levels of lipogenic acetyl-CoA carboxylase. This differential gene expression may, in part, contribute to increased hepatic lipid content following the castration of bulls. However, we found no differences in the hepatic expression levels of genes related to triglyceride synthesis (mitochondrial glycerol-3-phosphate acyltransferase, diacylglycerol O-acyltransferase 1 and 2) and fatty acid (FA) oxidation (carnitine palmitoyltransferase 1A, C-4 to C-12 straight chain acyl-CoA dehydrogenase, very long chain acyl-CoA dehydrogenase) between bulls and steers. No differences in gene expression for very-low-density lipoprotein (VLDL) secretion, including apolipoprotein B mRNA and microsomal triglyceride transfer protein (MTTP) protein, were observed in the liver although MTTP mRNA levels were higher in steers compared to bulls. In conclusion, FA synthesis may contribute to increased hepatic lipid deposition in steers following castration. However, hepatic lipid metabolism, including triglyceride synthesis, FA oxidation, and VLDL secretion, was not significantly altered by castration. Our results suggest that hepatic lipid metabolism does not significantly contribute to increased body fat deposition in steers following castration.

Effects of CoCl2 on multi-lineage differentiation of C3H/10T1/2 mesenchymal stem cells

  • Yoo, Hong Il;Moon, Yeon Hee;Kim, Min Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권1호
    • /
    • pp.53-62
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) in the bone marrow and other somatic tissues reside in an environment with relative low oxygen tension. Cobalt chloride ($CoCl_2$) can mimic hypoxic conditions through transcriptional changes of some genes including hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) and vascular endothelial growth factor (VEGF). This study evaluated the potential role of $CoCl_2$ preconditioning on multi-lineage differentiation of C3H/10T1/2, a murine MSC line to understand its possible molecular mechanisms in vitro. $CoCl_2$ treatment of MSCs markedly increased HIF-$1{\alpha}$ and VEGF mRNA, and protein expression of HIF-$1{\alpha}$. Temporary preconditioning of MSCs with $CoCl_2$ induced up-regulation of osteogenic markers including alkaline phosphatase, osteocalcin, and type I collagen during osteogenic differentiation, followed by enhanced mineralization. $CoCl_2$ also increased chondrogenic markers including aggrecan, sox9, and type II collagen, and promoted chondrocyte differentiation. $CoCl_2$ suppressed the expression of adipogenic markers including $PPAR{\gamma}$, aP2, and $C/EBP{\alpha}$, and inhibited adipogenesis. Temporary preconditioning with $CoCl_2$ could affect the multi-lineage differentiation of MSCs.

Transcriptional Interplay between Malassezia restricta and Staphylococcus Species Co-Existing in the Skin Environment

  • Hyun Oh Yang;Yong-Joon Cho;Jae Min Lee;Kyoung-Dong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권3호
    • /
    • pp.319-328
    • /
    • 2023
  • Malassezia and Staphylococcus are the most dominant genera in human skin microbiome. To explore the inter-kingdom interactions between the two genera, we examined the transcriptional changes in Malassezia and Staphylococcus species induced upon co-culturing. RNA-seq analyses revealed that genes encoding ribosomal proteins were upregulated, while those encoding aspartyl proteases were downregulated in M. restricta after co-culturing with Staphylococcus species. We identified MRET_3770 as a major secretory aspartyl protease coding gene in M. restricta through pepstatin-A affinity chromatography followed by mass spectrometry and found that the expression of MRET_3770 was significantly repressed upon co-culturing with Staphylococcus species or by incubation in media with reduced pH. Moreover, biofilm formation by Staphylococcus aureus was inhibited in the spent medium of M. restricta, suggesting that biomolecules secreted by M. restricta such as secretory aspartyl proteases may degrade the biofilm structure. We also examined the transcriptional changes in S. aureus co-cultured with M. restricta and found co-cultured S. aureus showed increased expression of genes encoding ribosomal proteins and downregulation of those involved in riboflavin metabolism. These transcriptome data of co-cultured fungal and bacterial species demonstrate a dynamic interplay between the two co-existing genera.

Dexmedetomidine and LPS co-treatment attenuates inflammatory response on WISH cells via inhibition of p38/NF-kB signaling pathway

  • Kim, Tae-Sung;Yoon, Ji-Young;Kim, Cheul-Hong;Choi, Eun-Ji;Kim, Yeon Ha;Kim, Eun-Jung
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제22권4호
    • /
    • pp.277-287
    • /
    • 2022
  • Background: Inflammatory dental diseases that occur during pregnancy can cause preterm labor and/or intrauterine growth restriction. Therefore, proactive treatment of dental diseases is necessary during pregnancy. Dexmedetomidine (DEX) is a widely used sedative in the dental field, but research on the effect of DEX on pregnancy is currently insufficient. In this study, we investigated the effects of co-treatment with DEX and lipopolysaccharide (LPS) on inflammatory responses in human amnion-derived WISH cells. Methods: Human amnion-derived WISH cells were treated with 0.001, 0.01, 0.1, and 1 ㎍/mL DEX with 1 ㎍/mL LPS for 24 h. Cytotoxicity of WISH cells was evaluated by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. The protein expression of cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), p38, and nuclear factor kappa B (NF-𝜅B) was examined by western blot analysis. The mRNA expression of pro-inflammatory cytokines such as interleukin (IL)-1𝛽 and tumor necrosis factor (TNF)-𝛼 was analyzed by real-time quantitative polymerase chain reaction. Results: Co-treatment with DEX and LPS showed no cytotoxicity in the WISH cells. The mRNA expression of IL-1𝛽 and TNF-𝛼 decreased after co-treatment with DEX and LPS. DEX and LPS co-treatment decreased the protein expression of COX-2, PGE2, phospho-p38, and phospho-NF-𝛋B in WISH cells. Conclusion: Co-treatment with DEX and LPS suppressed the expression of COX-2 and PGE2, as well as pro-inflammatory cytokines such as IL-1𝛽 and TNF-𝛼 in WISH cells. In addition, the anti-inflammatory effect of DEX and LPS co-treatment was mediated by the inhibition of p38/NF-𝜅B activation.

Bee Venom Enhanced Cytotoxic Effect of Natural Killer Cells on Human Lung Cancer Through Inducing Extrinsic Apoptosis

  • Kim, Jung Hyun;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • 제31권1호
    • /
    • pp.111-119
    • /
    • 2014
  • Objectives : I investigated whether Bee Venom can synergistically strengthen the cytotoxic effects of NK-92 cells, enhancing the inhibition of the growth of Lung Cancer Cells including A549 and NCI-H460 through induction of death receptor dependent extrinsic apoptosis and NO generation in the Nitro-oxide pathway. Methods : Bee Venom inhibited cell proliferation of A549 or NCI-H460 Human Lung Cancer Cells as well as NK-92 Cells. Moreover, when they were co-punctured with NK cells and concomitantly treated by 3 ${\mu}g/ml$ of Bee Venom, more influence was exerted on inhibition of proliferation of A549 or NCI-H460 Human Lung Cancer Cells than BV or NK cell co-culture alone. Results : The expression of Fas, TNFR2, DR3, DR6 in A549 Lung Cancer Cells was significantly increased by co-culture of NK-92 cells and treatment of 3 ${\mu}g/ml$ of Bee Venom, compared to co-culture of NK-92 cells alone, whereas the expression of Fas, TNFR2, DR6 in NCI-H460 Lung Cancer Cells was significantly increased by co-culture of NK-92 cells, representing no synergistic effects in the co-culture of NK-92 cell and concomitant treatment of 3 ${\mu}g/ml$ of Bee Venom. Coincidently, caspase-8, a expression of pro-apoptotic proteins in the extrinsic apoptosis pathway demonstrated same results as the above. Meanwhile, In NO generation, there is little change of NO generation in co-culture of NK-92 cells with A549 cells as well as the co-culture of NK-92 cell with them and concomitant treatment of 3 ${\mu}g/ml$ of Bee Venom, whereas increase of NO generation was shown in co-culture of NK-92 cells with NCI-H460 cells as well as the co-culture of NK-92 cell with them and concomitant treatment of 3 ${\mu}g/ml$ of Bee Venom, although synergistic effects by Bee Venom was not found. Conclusions : These present data provide that Bee Venom could be useful candidate compounds to enhance lung cancer growth inhibiting ability of NK-92 cells through DR expression and the related apoptosis.

Whole Genomic Expression Analysis of Rat Liver Epithelial Cells in Response to Phenytoin

  • Kim, Ji-Hoon;Kim, Seung-Jun;Yeon, Jong-Pil;Yeom, Hye-Jung;Jung, Jin-Wook;Oh, Moon-Ju;Park, Joon-Suk;Kang, Kyung-Sun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • 제2권2호
    • /
    • pp.120-125
    • /
    • 2006
  • Phenytoin is an anti-epileptic. It works by slowing down impulses in the brain that cause seizures. The recent microarray technology enables us to understand possible mechanisms of genes related to compounds which have toxicity in biological system. We have studied that the effect of a compound related to hepatotoxin in vitro system using a rat whole genome microarray. In this study, we have used a rat liver epithelial cell line WB-F344 and phenytoin as a hepatotoxin. WB-F344 was treated with phenytoin for 1 to 24 hours. Total RNA was isolated at times 1, 6 and 24h following treatment of phenytoin, and hybridized to the microarray containing about 22,000 rat genes. After analysis with clustering methods, we have identified a total of 1,455 differentially expressed genes during the time course. Interestingly, about 1,049 genes exhibited differential expression pattern in response to phenytoin in early time. Therefore, the identification of genes associated with phenytoin in early response may give important insights into various toxicogenomic studies in vitro system.

Evaluation of Anti-Colitic Effect of Chung-Jang-Hwan (C-mix) in Mice

  • Lee, Ho-Yong;Ahn, Young-Tae;Park, Se-Hoon;Ahn, Young-Min;Shim, Jae-Jung;Lee, Jung-Hee;Lee, Jeong-Sang;Surh, Young-Joon;Huh, Chul-Sung;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.52-58
    • /
    • 2011
  • The inhibitory effect of Chung-Jang-Hwan (C-mix) consisted of Geranium nepalense subsp. thunbergii, Saururus chinensis, and Rubus coreanus were investigated in dextran sulfate sodium (DSS)-induced colitic mice by microarray analysis. Treatment with Cmix improved colitic symptoms, including colon shortening and myeloperoxidase activity. Treatment with DSS alone upregulated the expression levels of inflammation-related genes, including IL-$1\beta$, IL-6, CCL2, CCL4, CCL5, CCL7, CCL8, CCL24, CXCL1, CXCL2, CXCL5, CXCL9 and CXCL10, and other colitis-related genes such as COX-2, PAP, MMP family, S100a8, S100a9 and DEFA1 in mice. However, treatment with C-mix inhibited the expression levels of inflammation-associated genes induced by DSS. The increased expression levels of COX-2 and IL-$1\beta$, representative inflammatory genes, were confirmed by a quantitative realtime polymerase chain reaction analysis. These results indicate that C-mix may ameliorate colitis by the inhibitory regulation of inflammation-associated genes.

Rat Malonyl-CoA Decarboxylase; Cloning, Expression in E. coli and its Biochemical Characterization

  • Lee, Gha-Young;Bahk, Young-Yil;Kim, Yu-Sam
    • BMB Reports
    • /
    • 제35권2호
    • /
    • pp.213-219
    • /
    • 2002
  • Malonyl-CoA decarboxylase (E.C.4.1.1.9) catalyzes the conversion of malonyl-CoA to acetyl-CoA. Although the metabolic role of this enzyme has not been fully defined, it has been reported that its deficiency is associated with mild mental retardation, seizures, hypotonia, cadiomyopathy, developmental delay, vomiting, hypoglycemia, metabolic acidosis, and malonic aciduria. Here, we isolated a cDNA clone for malonyl CoA decarboxylase from a rat brain cDNA library, expressed it in E. coli, and characterized its biochemical properties. The full-length cDNA contained a single open-reading frame that encoded 491 amino acid residues with a calculated molecular weight of 54, 762 Da. Its deduced amino acid sequence revealed a 65.6% identity to that from the goose uropigial gland. The sequence of the first 38 amino acids represents a putative mitochondrial targeting sequence, and the last 3 amino acid sequences (SKL) represent peroxisomal targeting ones. The expression of malonyl CoA decarboxylase was observed over a wide range of tissues as a single transcript of 2.0 kb in size. The recombinant protein that was expressed in E. coli was used to characterize the biochemical properties, which showed a typical Michaelis-Menten substrate saturation pattern. The $K_m$ and $V_{max}$ were calculated to be $68\;{\mu}M$ and $42.6\;{\mu}mol/min/mg$, respectively.

Lipopolysaccharide 유도된 Raw264.7 세포주에서 전사조절인자 NF-κB와 IRF-1의 공동작용에 의해 조절되는 PD-1 발현연구 (PD-1 Expression in LPS-Induced Raw264.7 Cells Is Regulated via Co-activation of Transcription Factor NF-κB and IRF-1)

  • 최은경;이수운;이수웅
    • 미생물학회지
    • /
    • 제49권4호
    • /
    • pp.301-308
    • /
    • 2013
  • Programmed Death-1 (PD-1)은 중요한 면역조절분자들 중 하나로 다양한 면역활성인자에 자극된 T 세포, B 세포, NKT 세포 및 대식세포에서 발현된다. Lipopolysaccaride (LPS)는 그람음성세균의 세포벽구성물질로 PD-1 발현을 유도하는 중요 면역원들 중 하나로 알려져 있다. 그러나 선천면역세포에서 PD-1 발현기전에 관한 연구는 미비한 실정이다. 본 연구에서는 LPS에 의해 자극된 Raw264.7 세포주를 대상으로 PD-1 발현 및 발현조전기전을 RT-PCR, Western Blot, 유세포분석기, ChIP assay 및 co-immunoprecipitation 방법으로 조사하였다. Raw264.7 세포주가 LPS로 자극되었을 때 PI3K 및 p38 신호전달경로를 경유하여 PD-1 발현이 크게 증가되었다. 또한 LPS 주사된 생쥐의 비장유래 대식세포에서도 PD-1 발현이 증가됨을 확인 하였다. PD-1 유전자의 프로모터 분석을 통해서 NF-${\kappa}B$ 및 IRF-1 결합부위가 PD-1 발현에 중요함을 알 수 있었다. 또한 PD-1 발현을 극대화하기 위하여 전사조절인자 NF-${\kappa}B$ 및 IRF-1의 공동활성이 필수적임을 확인하였다. 본 연구결과는 LPS 유도 생쥐패혈증모델에서 선천면역세포에 발현된 PD-1분자의 제어를 통한 질병 연구에 유용한 자료로 이용될 수 있을 것으로 사료된다.