Browse > Article
http://dx.doi.org/10.4062/biomolther.2011.19.1.052

Evaluation of Anti-Colitic Effect of Chung-Jang-Hwan (C-mix) in Mice  

Lee, Ho-Yong (R & D Center, Korea Yakult Co., Ltd.)
Ahn, Young-Tae (R & D Center, Korea Yakult Co., Ltd.)
Park, Se-Hoon (R & D Center, Korea Yakult Co., Ltd.)
Ahn, Young-Min (R & D Center, Korea Yakult Co., Ltd.)
Shim, Jae-Jung (R & D Center, Korea Yakult Co., Ltd.)
Lee, Jung-Hee (R & D Center, Korea Yakult Co., Ltd.)
Lee, Jeong-Sang (College of Pharmacy, Seoul National University)
Surh, Young-Joon (College of Pharmacy, Seoul National University)
Huh, Chul-Sung (R & D Center, Korea Yakult Co., Ltd.)
Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Sciences and Department Pharmaceutical Science, Kyung Hee University)
Publication Information
Biomolecules & Therapeutics / v.19, no.1, 2011 , pp. 52-58 More about this Journal
Abstract
The inhibitory effect of Chung-Jang-Hwan (C-mix) consisted of Geranium nepalense subsp. thunbergii, Saururus chinensis, and Rubus coreanus were investigated in dextran sulfate sodium (DSS)-induced colitic mice by microarray analysis. Treatment with Cmix improved colitic symptoms, including colon shortening and myeloperoxidase activity. Treatment with DSS alone upregulated the expression levels of inflammation-related genes, including IL-$1\beta$, IL-6, CCL2, CCL4, CCL5, CCL7, CCL8, CCL24, CXCL1, CXCL2, CXCL5, CXCL9 and CXCL10, and other colitis-related genes such as COX-2, PAP, MMP family, S100a8, S100a9 and DEFA1 in mice. However, treatment with C-mix inhibited the expression levels of inflammation-associated genes induced by DSS. The increased expression levels of COX-2 and IL-$1\beta$, representative inflammatory genes, were confirmed by a quantitative realtime polymerase chain reaction analysis. These results indicate that C-mix may ameliorate colitis by the inhibitory regulation of inflammation-associated genes.
Keywords
Chung-Jang-Hwan; C-mix; Colitis; Inflammation; Microarray;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 te Velde, A., de Kort, F., Sterrenburg, E., Pronk, I., ten Kate, F., Hommes, D. and van Deventer, S. J. (2007) Comparative analysis of colonic gene expression of three experimental colitis models mimicking inflammatory bowel disease. Inflamm. Bowel Dis. 13, 325-330   DOI
2 Tipoe, G., White, F. and Pritchett, C. (1992) A morphometric study of histological variations during cellular differentiation of normal human colorectal epithelium. J. Anat. 181(Pt 2), 189-197.
3 Uguccioni, M., Gionchetti, P., Robbiani, D., Rizzello, F., Peruzzo, S., Campieri, M. and Baggiolini, M. (1999) Increased expression of IP-10, IL-8, MCP-1, and MCP-3 in ulcerative colitis. Am. J. Pathol. 155, 331-336.   DOI
4 Xiufen, W., Hiramatsu, N. and Matsubara, M. (2004) The antioxidative activity of traditional Japanese herbs. Biofactors 21, 281-284.   DOI
5 Yang, H., Oh, S., Lim, S., Shin, H., Oh, Y. and Kim, J. (2008) Antiinflammatory activities of Rubus coreanus depend on the degree of fruit ripening. Phytother. Res. 22, 102-107.   DOI
6 Yang, S, Choi, M, Kim, O, Myung, S, Jung, H, Hong, W., Kim, J. H., and Min, Y. I. (2002) The increased expression of an array of C-X-C and C-C chemokines in the colonic mucosa of patients with ulcerative colitis: regulation by corticosteroids. Am. J. Gastroenterol. 97, 126-132.   DOI
7 Yoo, H., Kang, H., Jung, H., Kim, K., Lim, C. and Park, E. (2008) Anti-inflammatory, anti-angiogenic and anti-nociceptive activities of Saururus chinensis extract. J. Ethnopharmacol. 120, 282-286.   DOI
8 Zhong, W., Kolls, J., Chen, H., McAllister, F., Oliver, P. and Zhang, Z. (2008) Chemokines orchestrate leukocyte trafficking in inflammatory bowel disease. Front Biosci. 13, 1654-1664.   DOI
9 Rafii, F., Ruseler-Van Embden, J. and van Lieshout, L. (1999) Changes in bacterial enzymes and PCR profiles of fecal bacteria from a patient with ulcerative colitis before and after antimicrobial treatments. Dig. Dis. Sci. 44, 637-642   DOI
10 Salmela, M., MacDonald, T., Black, D., Irvine, B., Zhuma, T., Saarialho-Kere, U. and Pender, S. L. (2002) Upregulation of matrix metalloproteinases in a model of T cell mediated tissue injury in the gut: analysis by gene array and in situ hybridisation. Gut 51, 540-547.   DOI
11 Sasaki, S., Yoneyama, H., Suzuki, K., Suriki, H., Aiba, T., Watanabe, S., Kawauchi, Y., Kawachi, H., Shimizu, F., Matsushima, K, Asakura, H, and Narumi, S. (2002) Blockade of CXCL10 protects mice from acute colitis and enhances crypt cell survival. Eur. J. Immunol. 32, 3197-3205.   DOI
12 Singleton, V. L., Orthofer, R. and Lamuela-Raventos, R. M. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Oxidants and Antioxidants, Pt A. 299, 152-178.   DOI
13 Schreiber, S., Nikolaus, S., Hampe, J., Hamling, J., Koop, I., Groessner, B., Lochs, H. and Raedler, A. (1999) Tumour necrosis factor alpha and interleukin 1beta in relapse of Crohn's disease. Lancet. 353, 459-461.   DOI
14 Shanahan, F. (2002) Crohn's disease. Lancet 359, 62-69.   DOI
15 Shimoyama, T., Sawada, K., Hiwatashi, N., Sawada, T., Matsueda, K., Munakata, A., Asakura, H., Tanaka, T., Kasukawa, R., Kimura, K., Suzuki, Y., Nagamachi, Y., Muto, T., Nagawa, H., Iizuka, B., Baba, S., Nasu, M., Kataoka, T., Kashiwagi, N. and Saniabadi, A. R. (2001) Safety and efficacy of granulocyte and monocyte adsorption apheresis in patients with active ulcerative colitis: a multicenter study. J. Clin. Apher. 16, 1-9.   DOI
16 Szkaradkiewicz, A., Marciniak, R., Chudzicka-Strugała, I., Wasilewska, A., Drews, M., Majewski, P., Karpinski, T. and Zwozdziak, B. (2009) Proinfl ammatory cytokines and IL-10 in infl ammatory bowel disease and colorectal cancer patients. Arch. Immunol. Ther. Exp. (Warsz) 57, 291-294.   DOI
17 Lee, J., Hwang, B., Kim, K., Nam, J. and Hong, Y. and Lee, J. (2003) Suppression of RelA/p65 transactivation activity by a lignoid manassantin isolated from Saururus chinensis. Biochem. Pharmacol. 66, 1925-1933.   DOI
18 Lobenhofer, E., Bushel, P., Afshari, C. and Hamadeh, H. (2001) Progress in the application of DNA microarrays. Environ. Health Perspect. 109, 881-891.   DOI
19 Louis, E., Ribbens, C., Godon, A., Franchimont, D., De Groote, D., Hardy, N., Boniver, J., Belaiche, J. and Malaise, M. (2000) Increased production of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 by infl amed mucosa in infl ammatory bowel disease. Clin. Exp. Immunol. 120, 241-246.   DOI
20 McCormack, G., Moriarty, D., O'Donoghue, D., McCormick, P., Sheahan, K. and Baird, A. (2001) Tissue cytokine and chemokine expression in inflammatory bowel disease. Inflamm. Res. 50, 491-495.   DOI
21 Pallone, F. and Monteleone, G. (1998) Interleukin 12 and Th1 responses in inflammatory bowel disease. Gut 43, 735-736.   DOI
22 Ogawa, H., Fukushima, K., Naito, H., Funayama, Y., Unno, M., Takahashi, K., Kitayama, T., Matsuno, S., Ohtani, H., Takasawa, S., Okamoto, H. and Sasaki, I. (2003) Increased expression of HIP/PAP and regenerating gene III in human inflammatory bowel disease and a murine bacterial reconstitution model. Inflamm. Bowel Dis. 9, 162-170.   DOI
23 Papadakis, K. (2004) Chemokines in inflammatory bowel disease. Curr. Allergy Asthma Rep. 4, 83-89.   DOI
24 Park, J., Oh, S., Lim, S., Lee, Y., Shin, H., Oh, Y., Choe, N. H., Park, J. H. and Kim, J. K. (2006) Induction of heme oxygenase-1 mediates the anti-inflammatory effects of the ethanol extract of Rubus coreanus in murine macrophages. Biochem. Biophys. Res. Commun. 351, 146-152.   DOI
25 Fukata, M., Chen, A., Klepper, A., Krishnareddy, S., Vamadevan, A., Thomas, L., Xu, R., Inoue, H., Arditi, M., Dannenberg, A. J. and Abreu, M. T. (2006) Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology 131, 862-877.   DOI
26 Helwig, U., Gionchetti, P., Rizzello, F., Lammers, K., Kuhbacher, T., Schreiber, S., Baggiolini, M., Uguccioni, M. and Campieri, M. (2004) CXC and CC chemokine expression in inflamed and noninflamed pelvic ileal pouch tissue. Int. J. Colorectal. Dis. 19, 165-170.   DOI
27 Jonsson, D., Amisten, S., Bratthall, G., Holm, A. and Nilsson, B. (2009) LPS induces GROalpha chemokine production via NF-kappaB in oral fibroblasts. Inflamm. Res. 58, 791-796.   DOI
28 Kobayashi, Y. (2008) The role of chemokines in neutrophil biology. Front Biosci. 13, 2400-2407.   DOI
29 Khan, I., Al-Awadi, F., Thomas, N., Haridas, S. and Anim, J. (2002) Cyclooxygenase-2 inhibition and experimental colitis: beneficial effects of phosphorothioated antisense oligonucleotide and meloxicam. Scand. J. Gastroenterol. 37, 1428-1436.   DOI
30 Kitamura, K., Nakamoto, Y., Kaneko, S. and Mukaida, N. (2004) Pivotal roles of interleukin-6 in transmural infl ammation in murine T cell transfer colitis. J. Leukoc. Biol. 76, 1111-1117.   DOI
31 Kwon, J., Keates, A., Anton, P., Botero, M., Goldsmith, J. and Kelly, C. (2005) Topical antisense oligonucleotide therapy against LIX, an enterocyte-expressed CXC chemokine, reduces murine colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G1075-1083.   DOI
32 Lawrance, I., Fiocchi, C. and Chakravarti, S. (2001) Ulcerative colitis and Crohn's disease: distinctive gene expression profi les and novel susceptibility candidate genes. Hum. Mol. Genet. 10, 445-456.   DOI
33 Autschbach, F., Giese, T., Gassler, N., Sido, B., Heuschen, G., Heuschen, U., Zuna, I., Schulz, P., Weckauf, H., Berger, I., Otto, H. F. and Meuer, S. C. (2002) Cytokine/chemokine messenger-RNA expression profi les in ulcerative colitis and Crohn's disease. Virchows Arch. 441, 500-513.   DOI
34 Baugh, M., Perry, M., Hollander, A., Davies, D., Cross, S., Lobo, A., Taylor, C. J. and Evans, G. S. (1999) Matrix metalloproteinase levels are elevated in infl ammatory bowel disease. Gastroenterology 117, 814-822.   DOI
35 Binder, V. (2004) Epidemiology of IBD during the twentieth century: an integrated view. Best Pract. Res. Clin. Gastroenterol. 18, 463-479.   DOI
36 Egesten, A., Eliasson, M., Olin, A., Erjefält, J., Bjartell, A., Sangfelt, P. and Carlson, M. (2007) The proinfl ammatory CXC-chemokines GRO-alpha/CXCL1 and MIG/CXCL9 are concomitantly expressed in ulcerative colitis and decrease during treatment with topical corticosteroids. Int. J. Colorectal. Dis. 22, 1421-1427.   DOI
37 Cole, A., Ganz, T., Liese, A., Burdick, M., Liu, L. and Strieter, R. (2001) Cutting edge: IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial activity. J. Immunol. 167, 623-7.   DOI
38 Costello, C., Mah, N., Hasler, R., Rosenstiel, P., Waetzig, G., Hahn, A., Lu, T., Gurbuz, Y., Nikolaus, S., Albrecht, M., Hampe, J., Lucius, R., Kloppel, G., Eickhoff, H., Lehrach, H., Lengauer, T. and Schreiber, S. (2005) Dissection of the infl ammatory bowel disease transcriptome using genome-wide cDNA microarrays. PLoS Med. 2, e199.   DOI
39 Dieckgraefe, B., Crimmins, D., Landt, V., Houchen, C., Anant, S., Porche-Sorbet, R. and Ladenson, J. H. (2002) Expression of the regenerating gene family in infl ammatory bowel disease mucosa: Reg Ialpha upregulation, processing, and antiapoptotic activity. J. Investig. Med. 50, 421-434.   DOI
40 Egesten, A., Olin, A., Linge, H., Yadav, M., Morgelin, M., Karlsson, A. and Collin, M. (2009) SpeB of Streptococcus pyogenes differentially modulates antibacterial and receptor activating properties of human chemokines. PLoS One 4, e4769.   DOI
41 Atreya, R., Mudter, J., Finotto, S., Müllberg, J., Jostock, T., Wirtz, S., Schütz, M., Bartsch, B., Holtmann, M., Becker, C., Strand, D., Czaja, J., Schlaak, J. F., Lehr, H. A., Autschbach, F., Schürmann, G., Nishimoto, N., Yoshizaki, K., Ito, H., Kishimoto, T., Galle, P. R., Rose-John, S. and Neurath, M. F. (2000) Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal infl ammation: evidence in crohn disease and experimental colitis in vivo. Nat. Med. 6, 583-588.   DOI
42 Amoli, M., Larijani, B., Thomson, W., Ollier, W. and Gonzalez-Gay, M. (2005) Two polymorphisms in the epithelial cell-derived neutrophil-activating peptide (ENA-78) gene. Dis. Markers 21, 75-77.   DOI