• Title/Summary/Keyword: Co-based catalyst

Search Result 247, Processing Time 0.024 seconds

Characteristics of Pt/C-based Catalysts for HI Decomposition in SI process (SI 공정에서 HI 분해를 위한 백금담지 활성탄 촉매의 특성)

  • Kim, J.M.;Kim, Y.H.;Kang, K.S.;Kim, C.H.;Park, C.S.;Bae, K.K.
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.3
    • /
    • pp.199-208
    • /
    • 2008
  • HI decomposition was conducted using Pt/C-based catalysts with a fixed-bed reactor in the range of 573 K to 773 K. To examine the change of the characteristic properties of the catalysts, $N_2$ adsorption analyser, a X-ray diffractometer(XRD), and a scanning electron microscopy(SEM) were used before and after the HI decomposition reaction. the effect of Pt loading on HI decomposition was investigated by $CO_2$-TPD. HI conversion of all catalysts increased as decomposition temperature increased. The XRD analysis showed that the sizes of platinum particle became larger and agglomerated into a lump during the reaction. From $CO_2$-TPD, it can be concluded that the cause for the increase in catalytic activity may be attributed to the basic sites of catalyst surface. The results of both b desorption and gasification reaction showed the restriction on the use of Pt/C-based catalyst.

Synthesis of CoFe2O4 Nanoparticles as Electrocatalyst for Oxygen Evolution Reaction (산소 발생 반응 용 전기화학촉매로 사용되는 CoFe2O4 나노 입자 합성 및 특성 분석)

  • Lee, Jooyoung;Kim, Geulhan;Yang, Juchan;Park, Yoo Sei;Jang, Myeong Je;Choi, Sung Mook
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.97-104
    • /
    • 2020
  • One of the main challenges of electrochemical water splitting technology is to develop a high performance, low cost oxygen-evolving electrode capable of substituting a noble metal catalyst, Ir or Ru based catalyst. In this work, CoFe2O4 nanoparticles with sub-44 nmsize of a inverse spinel structure for oxygen evolution reaction (OER) were synthesized by the injection of KNO3 and NaOH solution to a preheated CoSO4 and Fe(NO3)3 solution. The synthesis time of CoFe2O4 nanoparticles was controlled to control particle and crystallite size. When the synthesis time was 6 h, CoFe2O4 nanoparticles had high conductivity and electrochemical surface area. The overpotential at current denstiy of 10 mA/㎠ and Tafel slope of CoFe2O4 (6h) were 395 mV and 52 mV/dec, respectively. In addition, the catalyst showed excellent durability for 18 hours at 10 mA/㎠.

Recent Developments of Metal-N-C Catalysts Toward Oxygen Reduction Reaction for Anion Exchange Membrane Fuel Cell: A Review

  • Jong Gyeong Kim;Youngin Cho;Chanho Pak
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.207-219
    • /
    • 2024
  • Metal-N-C (MNC) catalysts have been anticipated as promising candidates for oxygen reduction reaction (ORR) to achieve low-cost polymer electrolyte membrane fuel cells. The structure of the M-Nx moiety enabled a high catalytic activity that was not observed in previously reported transition metal nanoparticle-based catalysts. Despite progress in non-precious metal catalysts, the low density of active sites of MNCs, which resulted in lower single-cell performance than Pt/C, needs to be resolved for practical application. This review focused on the recent studies and methodologies aimed to overcome these limitations and develop an inexpensive catalyst with excellent activity and durability in an alkaline environment. It included the possibility of non-precious metals as active materials for ORR catalysts, starting from Co phthalocyanine as ORR catalyst and the development of methodologies (e.g., metal-coordinated N-containing polymers, metal-organic frameworks) to form active sites, M-Nx moieties. Thereafter, the motivation, procedures, and progress of the latest research on the design of catalyst morphology for improved mass transport ability and active site engineering that allowed the promoted ORR kinetics were discussed.

Investigation of Catalytic Deactivation by Small Content Oxygen Contained in Regeneration Gas Influenced on DSRP (직접 황 회수 공정으로 유입되는 재생가스에 함유된 미량산소의 촉매활성저하 원인 규명)

  • Choi, Hee-Young;Park, No-Kuk;Lee, Tae Jin
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.212-217
    • /
    • 2014
  • In order to regenerate the sulfidated desulfurization sorbent, oxygen is used as the oxidant agent on the regeneration process. The small amount of oxygen un-reacted in regeneration process is flowed into direct sulfur recovery process. However, the reactivity for $SO_2$ reduction can be deteriorated with the un-reacted oxygen by various reasons. In this study, the deactivation effects of un-reacted oxygen contained in the off-gas of regeneration process flowed into direct sulfur recovery process of hot gas desulfurization system were investigated. Sn-Zr based catalysts were used as the catalyst for $SO_2$ reduction. The contents of $SO_2$ and $O_2$ contained in the regenerator off-gas used as the reactants were fixed to 5.0 vol% and 4.0 vol%, respectively. The catalytic activity tests with a Sn-Zr based catalyst were for $SO_2$ reduction performed at $300-450^{\circ}C$ and 1-20 atm. The un-reacted oxygen oxidized the elemental sulfur produced by $SO_2$ catalytic reduction and the conversion of $SO_2$ was reduced due to the production of $SO_2$. However, the temperature for the oxidation of elemental sulfur increased with increasing pressure in the catalytic reactor. Therefore, it was concluded that the decrease of reactivity at high pressure is occurred by catalytic deactivation, which is the re-oxidation of lattice oxygen vacancy in Sn-Zr based catalyst with the un-reacted oxygen on the catalysis by redox mechanism. Meanwhile the un-reacted oxygen oxidized CO supplied as the reducing agent and the temperature in the catalyst packed bed also increased due to the combustion of CO. It was concluded that the rapidly increasing temperature in the packed bed can induce the catalytic deactivation such as the sintering of active components.

Preparation of Polyethylene Wax Using Homogeneous Titanium-based Catalyst (균일계 티타늄 촉매에 의한 폴리에틸렌 왁스의 제조)

  • Choi, Byung-Ryul
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.844-852
    • /
    • 1997
  • In the polymerization of ethylene to produce crystalline polyethylene wax using the homogeneous titanium-based catalyst, the effects of various parameters such as catalyst, temperature, pressure, comonomer and time on the performance of catalyst and the properties of polyethylene wax were investigated. The properties of polyethylene wax obtained were characterized in terms of molecular weight, molecular weight distribution, crystallinity, density and morphology. Among the polymerization features with a series of mixed cocatalyst systems of $(C_2H_5)_3Al$, $(i-C_4H_9)_3Al$, $(C_2H_5)_2AlCl$ and $(C_2H_5)_3Al_2Cl_3$, it turned out that the combination of $(C_2H_5)_3Al$ and $(C_2H_5)_3Al_2Cl_3$ was more effective than any other combination. It was noted that the activity of catalyst and the properties of polyethylene wax were affected by the polymerization parameters, i.e. time, temperature and hydrogen partial pressure. The various kinds of crystalline polyethylene wax could be obtained by careful control of these parameters. Also we could obtain low density polyethylene wax which has density down to 0.91 g/cc by use of 1-butene as a comonomer.

  • PDF

Removal of Tar and Soot in The Syngas Produced from Gasification of Wood Chip by Using Catalytic Reformer (촉매 개질기를 이용한 우드칩 가스화 합성가스 내 타르 및 수트 제거)

  • Yoon, Sang-Jun;Son, Young-Il;Kim, Yong-Ku;Lee, Jae-Goo
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.6
    • /
    • pp.519-525
    • /
    • 2009
  • The catalytic steam reforming of woody biomass tar and soot to convert a synthetic gas containing hydrogen was investigated by using a bench-scale biomass gasification system. One commercial nickel-based catalyst, Katalco 46-6Q, and two different kinds of natural minerals, dolomite and olivine, were tested as a reforming catalyst at various reforming temperatures. The reaction characteristics of woody biomass tar were also investigated by TGA at a variety of heating rates. With all three catalysts conversion efficiency of tar and soot increased at increasing temperature. The reforming of tar and soot in the synthetic gas induce the increase of combustible gases such as $H_2$, CO and $CH_4$ in the product gas. The nickel-based catalyst showed a higher tar and soot conversion efficiency than mineral catalysts under the same temperature conditions.

Effect of Promoter with Ru and Pd on Hydrogen Production over Ni/CeO2-ZrO2 Catalyst in Steam Reforming of Methane (메탄의 수증기 개질 반응에서 Ni/CeO2-ZrO2 촉매의 수소 생산에 대한 Ru 및 Pd의 조촉매 효과)

  • In Ho Seong;Kyung Tae Cho;Jong Dae Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.134-139
    • /
    • 2024
  • In the steam reforming of methane reactions, the effect of adding noble metals Ru and Pd to a Ni-based catalyst as promoters was analyzed in terms of catalytic activity and hydrogen production. The synthesized catalysts were coated on the surface of a honeycomb-structured metal monolith to perform steam methane reforming reactions. The catalysts were characterized by XRD, TPR, and SEM, and after the reforming reaction, the gas composition was analyzed by GC to measure methane conversion, hydrogen yield, and CO selectivity. The addition of 0.5 wt% Ru improved the reduction properties of the Ni catalyst and exhibited enhanced catalytic activity with a methane conversion of 99.91%. In addition, reaction characteristics were analyzed according to various process conditions. Methane conversion of over 90% and hydrogen yield of more than 3.3 were achieved at a reaction temperature of 800 ℃, a gas hourly space velocity (GHSV) of less than 10000 h-1, and a ratio of H2O to CH4 (S/C) higher than 3.

Valorizing Cattle Manure to Syngas via Catalytic Pyrolysis with CO2 (이산화탄소-촉매 열분해 활용 우분 유래 합성가스 증대 연구)

  • Lee, Dong-Jun;Jung, Jong-Min;Kim, Jung Kon;Lee, Dong-Hyun;Kim, Hyunjong;Park, Young-Kwon;Kwon, Eilhann E.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.141-150
    • /
    • 2022
  • To abate the environmental burden derived from the massive generation of cattle manure (CM), pyrolysis of CM was suggested as one of the methods for manure treatment. In respect of carbon utilization, pyrolysis has an advantage in that it can produce usable carbon-based chemicals. This study was conducted to investigate a syngas production from pyrolysis of CM in CO2 condition. In addition, mechanistic functionality of CO2 in CM pyrolysis was investigated. It was found that the formation of CO was enhanced at ≥ 600 ℃ in CO2 environment, which was attribute to the homogeneous reactions between CO2 and volatile matters (VMs). To expedite reaction kinetics for syngas production during CM pyrolysis, Catalytic pyrolysis was carried out using Co/SiO2 as a catalyst. The synergistic effects of CO2 and catalyst accelerate the formation of H2 and CO at entire temperature range. Thus, this result offers that CO2 could be a viable option for syngas production with the mitigation of greenhouse gas.

Preparation and Adhesion of One Part Room Temperature Curable Alkoxy Type Silicone Sealant (일액형 알코올형 실리콘 실란트의 제조 및 접착 물성)

  • Kim, Dae-Jun;Park, Young-Jun;Kim, Hyun-Joong;Lee, Bong Woo;Han, Jae Chul
    • Journal of Adhesion and Interface
    • /
    • v.2 no.4
    • /
    • pp.1-9
    • /
    • 2001
  • Silicone sealants are composed of polymer, plasticizer, crosslinker, catalyst and filler. Types and compositions of components are effected on sealant performances. In recent, use of alkoxy type silicone sealant increased due to environmental advantage. In this study, we investigated effects of component types and ratios on one-part room temperature curable alkoxy type silicone sealant preparation and adhesion properties. Alkoxy type silicone sealants were prepared with various PDMS (polydimethylsiloxane) viscosities. In addition, the effect of plasticizer, crosslinkers, and catalyst on sealant obtained from by mixture of PDMS viscosities of 20000 and 80000 was investigated. Reaction temperature on change of mixing time was observed, and then proper crosslinking systems were found. Adhesion (properties) of silicone sealants were measured. In the sealants preparation, stable reaction was achieved by adjusting composition variance ratio in the sealant mixture temperature below $40^{\circ}C$. The adhesion properties of sealant differ from substrate composition. The order of adhesion strength was glass/glass > glass/aluminum > aluminum/aluminum system. The elongation of sealant was increased as polymer viscosity and plasticizer content increased. The strength was increased as crosslinker and plasticizer decreased, while catalyst increased.

  • PDF

A Study on the Synthesis of Hydrocarbon by Fisher-Tropsch Synthesis over Cobalt Catalysts with High Surface Area Support (비 표면적 큰 코발트계 담지촉매를 사용한 피셔-트롭스 반응에 의한 탄화수소의 제조에 관한 연구)

  • Kim, Chul-Ung;Kim, You-Sung;Jeong, Soon-Yong;Jeong, Kwang-Eun;Chae, Ho-Jeong;Lee, Kwan-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.279-287
    • /
    • 2009
  • Fisher-Tropsch synthesis for the production of hydrocarbon from syngas was investigated on 20% cobalt-based catalysts (20% Co/HSA, 20% Co/Si-MMS), which were prepared by home-made supports with high surface areas such as high surface alumina (HSA) and silica mesopores molecular sieve (Si-MMS). In the gas phase reaction by syngas only, 20% Co/Si-MMS catalyst was shown in higher CO conversion and lower carbon dioxide formation than 20% Co/HSA, whereas the olefin selectivity was higher in 20% Co/HSA than in 20% Co/Si-MMS. In the effect of n-hexane added in syngas, the selectivities of $C_{5+}$ and olefin were increased by comparing the supercritical phase reaction with the gas phase reaction in addition to reduce unexpected methane and carbon dioxide.