• 제목/요약/키워드: Co-based catalyst

검색결과 244건 처리시간 0.029초

Autoxidation Core@Anti-Oxidation Shell Structure as a Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell

  • Heo, Yong-Kang;Lee, Seung-Hyo
    • Corrosion Science and Technology
    • /
    • 제21권5호
    • /
    • pp.412-417
    • /
    • 2022
  • Proton exchange membrane fuel cells (PEMFCs) provide zero emission power sources for electric vehicles and portable electronic devices. Although significant progresses for the widespread application of electrochemical energy technology have been achieved, some drawbacks such as catalytic activity, durability, and high cost of catalysts still remain. Pt-based catalysts are regarded as the most efficient catalysts for sluggish kinetics of oxygen reduction reaction (ORR). However, their prohibitive cost limits the commercialization of PEMFCs. Therefore, we proposed a NiCo@Au core shell structure as Pt-free ORR electrocatalyst in PEMFCs. NiCo alloy was synthesized as core to introduce ionization tendency and autoxidation reaction. Au as a shell was synthesized to prevent oxidation of core NiCo and increase catalytic activity for ORR. Herein, we report the synthesis, characterization, electrochemical properties, and PEMFCs performance of the novel NiCo@Au core-shell as a catalyst for ORR in PEMFCs application. Based on results of this study, possible mechanism for catalytic of autoxidation core@anti-oxidation shell in PEMFCs is suggested.

니켈계 유사 하이드로탈사이트 촉매상에서 n-헥사데칸의 수증기 개질에 의한 수소 생산 (Hydrogen Production from Steam Reforming of n-Hexadecane over Ni-Based Hydrotalcite-Like Catalyst)

  • 이승환;문동주
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.412-418
    • /
    • 2010
  • Steam reforming of n-hexadecane, a major component of diesel over Ni-based hydrotalcite-like catalyst was carried out at $900^{\circ}C$ at atmospheric pressure with space velocity of $10,000h^{-1}$ and feed molar ratio of steam/carbon=3.0. Ni-based hydrotalcite catalyst was prepared by a solid phase crystallization (spc) method and characterized by $N_2$-physisorption, CO chemisorption, TPR., XRD, and TEM techniques. It was found that spc Ni/MgAl catalyst showed higher catalytic stability and inhibition of carbon formation than Ni/$\gamma-Al_2O_3$ catalyst under the tested conditions. The results suggest that the modified spc-Ni/MgAl catalyst after optimization may be applied for the SR reaction of diesel.

Catalytic Ozonation of Phenol in Aqueous Solution by Co3O4 Nanoparticles

  • Dong, Yuming;Wang, Guangli;Jiang, Pingping;Zhang, Aimin;Yue, Lin;Zhang, Xiaoming
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2830-2834
    • /
    • 2010
  • The degradation efficiencies of phenol in aqueous solution were studied by semi-continuous experiments in the processes of ozone alone, ozone/bulky $Co_3O_4$ and ozone/$Co_3O_4$ nanoparticles. Catalyst samples (bulky $Co_3O_4$ and $Co_3O_4$ nanoparticles) were characterized by X-ray diffraction and transmission electron microscopy. The Brunauer-Emmett-Teller surface area, $pH_{pzc}$ and the density of surface hydroxyl groups of the two catalyst samples were also measured. The catalytic activity of $Co_3O_4$ nanoparticles was investigated for the removal of phenol in aqueous solutions under different reaction temperatures. Tert-butyl alcohol had little effect on the catalytic ozonation processes. Based on these results, the possible catalytic ozonation mechanism of phenol by $Co_3O_4$ nanoparticles was proposed as a reaction process between ozone molecules and pollutants.

저급탄화수소 수증기 개질에 의한 수소 제조용 니켈계 촉매개발 (Development of Ni-based Catalyst for Hydrogen Production with Steam Reforming of Light Hydrocarbon)

  • 김대현;이상득;이병권;김명준;홍석인;문동주
    • 신재생에너지
    • /
    • 제4권4호
    • /
    • pp.80-87
    • /
    • 2008
  • Steam reforming of LPG was investigated over spc-Ni/MgAl catalyst in a temperature range of $600{\sim}850^{\circ}C$, feed molar ratio of $H_2O/C=1.0{\sim}3.0$, space velocity of $10,000{\sim}90,000h^{-1}$ and at atmospheric pressure. spc-Ni/MgAl catalyst was prepared by a co-precipitation method, whereas Ni/MgO and $Ni/Al_2O_3$ catalysts were prepared by an incipient wetness method. The characteristics of catalysts were analyzed by N2 Physisorption, CO chemisorption, XRD, TOF-SIMS, SEM and TEM techniques. The Ni/MgO and $Ni/Al_2O_3$ catalysts were deactivated by the formation of carbon. However, the spc-Ni/MgAl catalyst showed higher conversion and $H_2$ selectivity than the other catalysts, even though carbon was formed on the surface of the catalyst during the reaction under the tested reaction conditions.

  • PDF

습식 TCE 분해반응에서 CoO2/TiO2 촉매의 반응활성 및 표면화학적 구조 (On-stream Activity and Surface Chemical Structure of CoO2/TiO2 Catalysts for Continuous Wet TCE Oxidation)

  • 김문현;추광호
    • 한국환경과학회지
    • /
    • 제14권2호
    • /
    • pp.221-230
    • /
    • 2005
  • Catalytic wet oxidation of trichloroethylene (TCE) in water has been conducted using $TiO_2-supported$ cobalt oxides at $36^{\circ}C$ with a weight hourly space velocity of $7,500\;h^{-1}.\;5\%\;CoO_x/TiO_2$, prepared by using an incipient wetness technique, might be the most promising catalyst for the wet oxidation although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. XPS spectra of both fresh and used Co surfaces gave different surface spectral features for each $CoO_x,\;Co\;2P_{3/2}$ binding energy for Co species in the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $CO_2TiO_4\;and\;CoTiO_3$. The used catalyst exhibited a 780.3-eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD patterns for $5\%\;CoO_x/TiO_2$ catalyst indicated that the phase structure of Co species in the catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present predominantly on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

전기화학적 물 분해 시스템에서 산소발생반응을 위한 Co와 Mo 기반 촉매의 최근 연구 동향 (Research on Co- and Mo-Based Catalysts for the Oxygen Evolution Reaction in Electrochemical Water Splitting System)

  • 박준성;정원석;부종찬
    • 전기화학회지
    • /
    • 제26권4호
    • /
    • pp.64-70
    • /
    • 2023
  • 급격한 온실가스 배출량 증가로 인해 지구 온난화가 심화되고 있다. 이로 인해 탄소중립의 필요성과 이행이 더욱 절실해졌다. 이를 위해 여러 가지 신재생에너지 중 수소에 대한 관심이 부각되고 있다. 수소는 지구 상에 풍부한 자원이며 무탄소 전원으로 친환경적이다. 궁극적으로 물의 전기분해에 의해 친환경 수소를 얻을 수 있다. 하지만 산소 발생 반응에 사용되는 촉매는 고가이며 희귀하고 촉매의 내구성에 문제가 있어 어려움을 겪고 있기 때문에 비귀금속 촉매의 개발이 필요하다. 본 총설에서는 최근 발표된 산소 발생 촉매 중 비귀금속 촉매인 Co와 Mo 기반의 촉매를 정리, 요약하여 소개하고 있다. 이를 통해 비귀금속 촉매의 활성과 내구성을 증가시키기 위한 촉매의 특성 설계를 이해하는 데 도움이 될 것이다.

High Performance Phenoxytitanium-Based Catalysts for Olefin Polymerization

  • Miyatake, Tatsuya
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.159-160
    • /
    • 2006
  • We developed novel catalyst, PHENICS composed of the combination of a cyclopentadienyl group to perform a high catalytic activity and a bulky phenoxy group, which performs the production of high molecular weight polyolefin. The polymerization activity of PHENICS at high temperature is higher than well-known CGC catalyst. PHENICS showed the excellent ability of comonomer incorporation into polymer chain. The obtained copolymer had a high molecular weight. The PHENICS catalyst is also active to the copolymerization of ethylene and several vinyl comonomers such as styrene, norbornen, and conjugated dienes. We will discuss new cocatalysts for PHENICS to improve activity and the ability of molecular weight control.

  • PDF

암모니아 개질에 대한 Ni 촉매 특성: Ni 함량과 공간속도 비교 (Ni Catalyst Properties for Ammonia Reforming: Comparison of Ni Content and Space Velocity)

  • 우진혁;김태영;김주언;조병옥;정석용;박새미;이수출;김재창
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.464-469
    • /
    • 2021
  • A reforming catalyst for hydrogen production from ammonia is being studied. Non-novel metal based Ni catalysts for use in ammonia reforming processes are being developed. In this study, the ammonia reforming characteristics according to Ni content of the alumina pellet supported catalyst in the mid-temperature region were investigated under different space velocity. 20 Ni and 3,000 h-1 showed the best catalytic activity with ammonia conversion of 63% among all conditions.

Influence of defective sites in Pt/C catalysts on the anode of direct methanol fuel cell and their role in CO poisoning: a first-principles study

  • Kwon, Soonchul;Lee, Seung Geol
    • Carbon letters
    • /
    • 제16권3호
    • /
    • pp.198-202
    • /
    • 2015
  • Carbon-supported Pt catalyst systems containing defect adsorption sites on the anode of direct methanol fuel cells were investigated, to elucidate the mechanisms of H2 dissociation and carbon monoxide (CO) poisoning. Density functional theory calculations were carried out to determine the effect of defect sites located neighboring to or distant from the Pt catalyst on H2 and CO adsorption properties, based on electronic properties such as adsorption energy and electronic band gap. Interestingly, the presence of neighboring defect sites led to a reduction of H2 dissociation and CO poisoning due to atomic Pt filling the defect sites. At distant sites, H2 dissociation was active on Pt, but CO filled the defect sites to form carbon π-π bonds, thus enhancing the oxidation of the carbon surface. It should be noted that defect sites can cause CO poisoning, thereby deactivating the anode gradually.

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction III. Modification of $Mo/γ-Al_2O_3$ Catalyst with Iron Group Metals

  • 박진남;김재현;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권12호
    • /
    • pp.1233-1238
    • /
    • 2000
  • $Mo/{\gamma}-Al_2O_3catalysts$ modified with Fe, Co, and Ni were prepared by impregnation method and catalytic activity for water gas shift reaction was examined. The optimum amount of Mo loaded for the reaction was 10 wt% $MoO_3$ to ${\gamma}-Al_2O_3.$ The catalytic activity of $MoO_3/{\gamma}-Al_2O_3was$ increased by modifying with Fe, Co, and Ni in the order of Co${\thickapprox}$ Ni > Fe. The optimum amounts of Co and Ni added were 3 wt% based on CoO and NiO to 10 wt% $MoO_3/{\gamma}-Al_2O_3$, restectively. The TPR (temperature-programmed reduction) analysis revealed that the addition of Co and Ni enganced the reducibility of the catalysts. The results of both catalytic activity and TPR experiments strongly suggest that the redox property of the catalyst is an important factor in water gas shift reaction on the sulfided Mo catalysts, which could be an evidence of oxy-sulfide redox mechanism.