• 제목/요약/키워드: Co-Based alloy

검색결과 248건 처리시간 0.022초

냉간단조 금형 WC-Co합금의 인장시험방법 개발 및 물성평가 (Development of Uniaxial Tensile Test Method to Evaluate Material Property of Tungsten Carbide-Cobalt Alloys for Cold Forging Dies)

  • 권인우;서영호;정기호
    • 소성∙가공
    • /
    • 제27권6호
    • /
    • pp.370-378
    • /
    • 2018
  • Cold forging, carried out at room temperature, leads to high dimensional accuracy and excellent surface integrity as compared to other forging methods such as warm and hot forgings. In the cold forging process, WC-Co (Tungsten Carbide-Cobalt) alloy is the mainly used material as a core dies because of its superior hardness and strength as compared to other structural materials. For cold forging, die life is the most significant factor because it is directly related to the manufacturing cost due to periodic die replacement in mass production. To investigate die life of WC-Co alloy for cold forging, mechanical properties such as strength and fatigue are essentially necessary. Generally, uniaxial tensile test and fatigue test are the most efficient and simplest testing method. However, uniaxial tension is not efficiently application to WC-Co alloy because of its sensitivity to alignment of the specimen due to its brittleness and difficulty in thread machining. In this study, shape of specimen, tools, and testing methods, which are appropriate for uniaxial tensile test for WC-Co alloy, are proposed. The test results such as Young's modulus, tensile strength and stress-strain curves are compared to those in previous literature to validate the proposed testing methods. Based on the validation of test results it was concluded that the newly developed testing method is applicable to other cemented carbides like Titanium carbides with high strength and brittleness, and also can be utilized to carry out fatigue tests for further investigation on die life of cold forging.

고잔류자화 $\alpha$-Fe기 Nd-Fe-B 초미세결정립 합금의 자기특성 (Magnetic Properties of $\alpha$-Fe Based Nd-Fe-B Nanocrystalline with High Remanence)

  • 조용수;김윤배;박우식;김창석;김택기
    • 한국자기학회지
    • /
    • 제5권1호
    • /
    • pp.38-41
    • /
    • 1995
  • $\alpha$-Fe를 주상으로 하는 새로운 Nd-Fe-B계 합금을 개발하기 위하여 Nd 함유량을 4at.%로 고정시킨 Nd-Fe-B 초미세결정립합금의 제조 및 자기특성이 조사되었다. 급속응고법으로 제조된 $Nd_{4}Fe_{85.5}B_{10.5}$ 비정질합금은 결정화하여 $\alpha$-Fe 기지상에 $Nd_{2}Fe_{14}B$이 형성되나 자기특성${_{i}H_{c}=95.5kA/m(1.2kOe),\;Br=1.2T}$은 열화된다. Nb 및 Cu를 첨가한 $Nd_{4}Fe_{82}B_{10}Nb_{3}Cu_{1}$ 합금은 $\alpha$-Fe 결정립미세화(<30nm)로 보자력이 207kA/m(2.6 kOe)로 증가하나 잔류자화는 개선되지 않았다. 이 합금조성에 8at.% Co 첨가는 결정립을 더욱 미세화시키며 자기특성을 개선 시킨다. 최적열처리조건에서 $Nd_{4}Fe_{74}Co_{8}B_{10}Nb_{3}Cu_{1}$ 합금의 잔류자화, 보자력 및 최대에너지적이 각각 1.34 T, 219 kA/m (2.75kOe) 및 $95.5kJ/m^{3}$(12MGOe) 이다.

  • PDF

생체용 Ti-Zr-Pd계 합금의 양극분극특성 (Anodic Polarization Properties of Ti-Zr-Pd Based Alloys for Biomedical Applications)

  • 정종현
    • 대한치과기공학회지
    • /
    • 제23권1호
    • /
    • pp.21-30
    • /
    • 2001
  • For biomedical applications. Ti-X%Zr-Y%Pd(X: $10{\sim}20$, Y:0.2 or 0.4) based alloys not containing harmful Al and V were newly designed, and polarization curves for their alloys were measured at $37^{\circ}C$ in 5% HCl solution in order to understand effects of Zr on the corrosion. From the results of anodic polarization behavior, it was found that the corrosion resistance increased with increasing Zr content. The results show their potential to develope Ti-based alloys for biomedical materials. The Ti-20%Zr-0.2%Pd alloy shows excellent corrosion resistance and was superior to those of the Ti. Ti-6%Al-4%V ELI alloy, Co-30%Cr-6%Mo alloy and STS 316L stainless steel.

  • PDF

팩 세멘테이션법에 의한 Incoloy 909 합금의 알루미나이징 (Aluminizing of Incoroy 909 Alloy by Pack Cementation Method)

  • 안진성;권순우;윤재홍;박봉규
    • 한국표면공학회지
    • /
    • 제39권4호
    • /
    • pp.173-178
    • /
    • 2006
  • Incoloy alloy 909 is an Fe-Ni-Co based superalloy that is attractive for gas turbine engine applications. The absence of chromium, however, makes the alloy more susceptible to oxidation in high temperature. To improve the oxidation resistance aluminizing was performed by high activity low temperature pack cementation process. Aluminizing condition was examined with different times and temperatures. Optimum aluminizing conditions were at the temperature of $552^{\circ}C$ for 20 hrs. In the optimized condition, the thickness of the aluminized layer was about $20{\mu}m$. Also, the aluminized layer made the alloy to increase the resistance to the corrosion.

Co-Cr 자성합금 박막의 조성적 상분리 현상의 열역학적 고찰 (A Study on Thermodynamics for Compositional Separation in Co-Cr magnetic Alloy Films)

  • 송오성;전전안
    • 한국재료학회지
    • /
    • 제9권4호
    • /
    • pp.341-344
    • /
    • 1999
  • We reported compositional separation(CS) into Co-enriched and Cri-enriched components inside the grains of Co-Cr based thin films prepared by rf sputtering. CS strongly depends on the sputtering conditions of substrate temperature and target composition. Tuning the microstructure of the Co-Cr films is important in order to employ the CS for high-density magnetic recording. We investigated the origin of CS from thermodynamic viewpoint. We employ a spinodal decomposition-like model to describe the origin of the CS in Co-Cr films. We consider the total free energy of the Co-Cr films as the sum of several free energies of; 1) thermodynamic mixing entropy of a binary solid solution, 2) magnetic ordering interaction(MOI) energy below the Curie temperature, and 3) excess interaction energy(XS) caused by the sputtering process as a function of temperature and composition. Those energies distorted the total free energy like the spinodal decomposition and caused the compositionally separated fine microstructure inside the grains. If the second derivative of the total free energy with respect to Cr composition becomes negative at a given substrate temperature, we may observe a metastable compositional separation inside the Co-Cr alloy films. We expect to exploit the microstructure of CS for ultra-high density magnetic recording.

  • PDF

이단 냉각열처리에 의한 Co계 비정질 합금의 연자기 특성 향상 (Enhancement of the Soft Magnetic Properties of Co-based Amorphous Alloy by Two-step Cooling Method.)

  • 양재호;김만중;정연춘;김윤배;김택기
    • 한국자기학회지
    • /
    • 제10권1호
    • /
    • pp.7-10
    • /
    • 2000
  • Co계 비정질합금을 400~46$0^{\circ}C$에서 열처리 한 후 냉각조건에 따른 자기특성의 변화를 조사하였다 42$0^{\circ}C$에서 30분 열처리 한 뒤 큐리점까지 노냉 후 수냉 시킨 경우 초투자율이 수냉 또는 노냉 했을 때보다 60-100% 정도 증가했다. 냉각속도에 따른 자기적 특성 변화를 내부음력 및 이온쌍의 규칙도(ordering) 관점에서 고찰하였다

  • PDF

Mechanical and wear properties of Cu-Al-Ni-Fe-Sn-based alloy

  • Okayasu, Mitsuhiro;Izuka, Daiki;Ninomiya, Yushi;Manabe, Yuki;Shiraishi, Tetsuro
    • Advances in materials Research
    • /
    • 제2권4호
    • /
    • pp.221-235
    • /
    • 2013
  • To obtain bronze with good mechanical properties and high wear resistance, a new bronze (CADZ) is proposed on the basis of various fundamental information. The CADZ consists of the elements Al10.5, Fe4.2, Sn3.7 and Ni3.1, and its design is based on Cu-Al10.5 alloy. The Cu-10.5%Al is very hard and brittle. To obtain the high material ductility of the Cu-10.5%Al alloy, an attempt was made to add a few percent of Sn. Moreover, to make high strength of the Cu alloy, microstructure with small grains was created by the proper amount of Fe and Ni (Fe/Ni = 0.89). The mechanical properties of the CADZ sample have been examined experimentally, and those were compared with commercial bronzes. The tensile strength and wear resistance of CADZ are higher than those for commercial bronzes. Although the ductility of CADZ is the lower level, the strain to failure of CADZ is about 2.0~5.0% higher than that for the Cu-Al10.5 alloy. Details of the microstructural effects on the mechanical properties in the CADZ sample were further discussed using various experimental results.

$Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ 초미세결정립합금의 자기특성 (Magnetic Propertes of $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ Nanocrystalline Alloys)

  • 조용수;김만중;천정남;김택기;박우식;김윤배
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.880-894
    • /
    • 1995
  • B의 함유량을 6 at% 고정하고 Nd함유량을 3~5 at%로 변화시킨 $\alpha$-Fe기 Nd-Fe-B 합금의 자기특성이 조사 되었다. 급속응고법으로 제조된 $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ 비정질합금은 열처리에 의하여 초미세결정립으로 결정화하며, Nd의 함유량에 따라 잔류자화 및 보자력이 변한다. x=3의 경우 최적열처리조건에서 $\alpha$-Fe(Co) 부피분율의 증가로 잔류자 화는 증가하나, 보자력은 감소한다. 그러나 Nd 함유량의 증가는 $Nd_{2}{(Fe,\;Co)}_{14}B$ 부피분율의 증가로 인하여 잔류자화는 감소하나 보자력은 향상된다. $640^{\circ}C$, 10 min 열처리조건에서 $Nd_{5}{(Fe_{0.9}Co_{0.1})}_{85}B_{6}Nb_{3}Cu_{1}$의 결정립크기는 약 20 nm이며, 잔류자화, 보자력 및 최대에너지적 은 각각 1.35 T, 219 kA/m (2.75 kOe) 및 $129\;kJ/m^{3}$ (16.2 MGOe)으로 가장 우수하다.

  • PDF