• Title/Summary/Keyword: Co-$Al_2O_3$

Search Result 1,037, Processing Time 0.025 seconds

Secondary Growth of Sodium Type Faujasite Zeolite Layers on a Porous $\alpha-Al_2O_3$ Tube and the $CO_2/N_2$ Separation (Na형 Faujasite 제올라이트 분리막 형성 및 $CO_2/N_2$ 분리)

  • Cho, Churl-Hee;Yeo, Jeong-Gu;Ahn, Young-Soo;Han, Moon-Hee;Kim, Yong-Ha;Hyun, Sang-Hoon
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.254-268
    • /
    • 2007
  • Sodium type faujasite(FAU) zeolite layers with diverse materials characteristics(Si/Al ratio, thickness, and structural discontinuity) were hydrothermally grown on a porous $\alpha-Al_2O_3$ tube, and then the $CO_2/N_2$ separation was evaluated at $30^{\circ}C$ for an equimolar mixture of $CO_2$ and $N_2$. Among hydrothermal conditions, $SiO_2$ content in hydrothermal solution seriously affected materials characteristics: with an increment in the $SiO_2$ content, Si/Al ratio, thickness, and structural discontinuity of grown FAU zeolite layer simultaneously increased. The present study reveals that structural discontinuity(intercrystalline voids due to an incomplete densification and cracks induced by GIS Na-P1 phase) is the most important variable affecting the $CO_2/N_2$ separation. Also, it was suggested that the $CO_2$ desorption in permeate side be the rate-determining(slowest) step in the overall $CO_2$ permeation.

Enhanced Device Performance of IZO-based oxide-TFTs with Co-sputtered $HfO_2-Al_2O_3$ Gate Dielectrics (Co-sputtered $HfO_2-Al_2O_3$을 게이트 절연막으로 적용한 IZO 기반 Oxide-TFT 소자의 성능 향상)

  • Son, Hee-Geon;Yang, Jung-Il;Cho, Dong-Kyu;Woo, Sang-Hyun;Lee, Dong-Hee;Yi, Moon-Suk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.1-6
    • /
    • 2011
  • A transparent oxide thin film transistors (Transparent Oxide-TFT) have been fabricated by RF magnetron sputtering at room temperature using amorphous indium zinc oxide (a-IZO) as both of active channel and source/drain, gate electrodes and co-sputtered $HfO_2-Al_2O_3$ (HfAIO) as gate dielectric. In spite of its high dielectric constant > 20), $HfO_2$ has some drawbacks including high leakage current and rough surface morphologies originated from small energy band gap (5.31eV) and microcrystalline structure. In this work, the incorporation of $Al_2O_3$ into $HfO_2$ was obtained by co-sputtering of $HfO_2$ and $Al_2O_3$ without any intentional substrate heating and its structural and electrical properties were investigated by x-ray diffraction (XRD), atomic force microscopy (AFM) and spectroscopic ellipsometer (SE) analyses. The XRD studies confirmed that the microcrystalline structures of $HfO_2$ were transformed to amorphous structures of HfAIO. By AFM analysis, HfAIO films (0.490nm) were considerably smoother than $HfO_2$ films (2.979nm) due to their amorphous structure. The energy band gap ($E_g$) deduced by spectroscopic ellipsometer was increased from 5.17eV ($HfO_2$) to 5.42eV (HfAIO). The electrical performances of TFTs which are made of well-controlled active/electrode IZO materials and co-sputtered HfAIO dielectric material, exhibited a field effect mobility of more than $10cm^2/V{\cdot}s$, a threshold voltage of ~2 V, an $I_{on/off}$ ratio of > $10^5$, and a max on-current of > 2 mA.

The Effect of Co2+-Ion Exchange Time into Zeolite Y (FAU, Si/Al = 1.56): Their Single-Crystal Structures

  • Seo, Sung Man;Kim, Hu Sik;Chung, Dong Yong;Suh, Jeong Min;Lim, Woo Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.243-249
    • /
    • 2014
  • Three single crystals of fully dehydrated $Co^{2+}$-exchanged zeolite Y (Si/Al = 1.56) were prepared by the exchange of $Na_{75}$-Y ($|Na_{75}|[Si_{117}Al_{75}O_{384}]$-FAU) with aqueous streams 0.05 M in $Co(NO_3)_2$, pH = 5.1, at 294 K for 6 h, 12 h, and 18 h, respectively, followed by vacuum dehydration at 673 K. Their single-crystal structures were determined by synchrotron X-ray diffraction techniques in the cubic space group Fd3m at 100(1) K. They were refined to the final error indices $R_1/wR_2$ = 0.0437/0.1165, 0.0450/0.1228, and 0.0469/0.1278, respectively. Their unit-cell formulas are $|Co_{29.1}Na_{11.8}H_{5.0}|[Si_{117}Al_{75}O_{384}]$-FAU, $|Co_{29.8}Na_{11.0}H_{4.4}|[Si_{117}Al_{75}O_{384}]$-FAU, and $|Co_{30.3}Na_{9.5}H_{4.9}|[Si_{117}Al_{75}O_{384}]$-FAU, respectively. In all three crystals, $Co^{2+}$ ions occupy sites I, I' and II; $Na^+$ ions are also at site II. The tendency of $Co^{2+}$ exchange slightly increases with increasing contact time as $Na^+$ content and the unit cell constant of the zeolite framework decrease.

The Oxide Coating Effects on the Magnetic Properties of Amorphous Alloys

  • 배영제;Jang, Ho G.;Chae, Hee K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.621-625
    • /
    • 1996
  • A variety of metal oxides were coated by sol-gel process from their metal alkoxides on the ribbons of Co-based and Fe-based amorphous alloys, and the effects of surface oxide coating on the magnetic properties of the alloy are investigated. The core loss is found to be reduced significantly by the oxide coating, the loss reduction becoming more prominent at higher frequencies. The shape of the hystersis loop is also dependent upon the kind of the coated metal oxide. The coatings of MgO, SiO2, MgO·SiO2 and MgO·Al2O3 induce tensile stress into the Fe-based ribbon whereas those of BaO, Al2O3, CaO·Al2O3, SrO·Al2O3 and BaO·Al2O3 induce compressive stress. These results may be explained by the modification of domain structures via magnetoelastic interactions with the shrinkage stress induced by the sol-gel coating.

Effects of Base Metal on the Partial Oxidation of Methane Reaction (메탄의 부분산화반응에 미치는 Base metal의 영향)

  • 오영삼;장보혁;백영순;이재의;목영일
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.256-264
    • /
    • 1999
  • The performance of the Pt-B/cordierite catalysts (2 wt%) Pt, 70 wt% Alumina, 28 wt%) Ceria and Zirconia, B: base metal) loaded with 6∼12 wt% Mn, Cu, V, Co, Cr and Ba, respectively was studied for partial oxidation of methane reaction and compared with that of Ni loaded catalyst. As a results, it was found that Ba, Co, Cr as well as Ni loaded catalysts showed higher activity for methane partial oxidation of methane than the Mn, Cu and V loaded catalyst. But it was known that catalysts having good activity for methane showed the good activity for coke formation, too. A XRD analysis of the catalyst before and after the reaction using 5 wt% Ni/Al$_2$O$_3$) showed that there were three Ni phases. In these results, it was found that methane oxidation reaction occulted at the front of the catalyst bed consisted of NiAl$_2$O$_4$and NiO and reforming reaction occurred at the rear part of the catalyst bed consisted of reduced Ni.

  • PDF

Decomposition of Toluene by γ-Al2O3 Catalysts Impregnated with Transition Metal (전이금속을 함침한 γ-Al2O3 촉매의 Toluene 분해)

  • Choi, Sung-Woo;Lee, Chul-Kyu
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.945-951
    • /
    • 2013
  • Alumina-supported catalysts containing different transition metals such as Cu, Cr, Mn, Zn, Co, W were investigated for their activity in the selective oxidation of toluene. Catalytic oxidation of toluene was investigated at atmospheric pressure in a fixed bed flow reactor system over transition metals with $Al_2O_3$ catalyst. The result showed the order of catalytic activities for the complete oxidation of toluene was Mn > Cu> Cr> Co> W> Zn for 5wt.% transition $metals/Al_2O_3$. $Mn/Al_2O_3$ catalysts containing different amount of Mn were characterized by X-ray diffraction spectroscopy for decision of loading amount of metal to alumina. 5 wt.%$Mn/Al_2O_3$ catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of $289^{\circ}C$.

CH4 Dry Reforming on Alumina-Supported Nickel Catalyst

  • Joo, Oh-Shim;Jung, Kwang-Deog
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1149-1153
    • /
    • 2002
  • CH4/CO2 dry reforming was carried out to make syn gas on the Ni/Al2O3 catalysts calcined at different temperatures. The Ni/Al2O3 (850 $^{\circ}C)$ catalyst gave good activity and stability w hereas the Ni/Al2O3 $(450^{\circ}C)$ catalyst showed lower activity and stability. The NiO/Al2O3 catalyst calcined at $850^{\circ}C$ for 16 h (Ni/Al2O3 $(850^{\circ}C))$ formed the spinel structure of nickel aluminate, which was confirmed by TPR. The carbon formation rate on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was very low till 20 h, and then steeply increased with reaction time without decreasing the activity for CH4 reforming. The Ni/Al2O3 $(450^{\circ}C)$ catalyst showed high carbon formation rate at the initial reaction time and then, the rate nearly stopped with continuous decreasing the activity for CH4 reforming. Even though the amount of carbon deposition on the Ni/Al2O3 $(850^{\circ}C)$ catalyst was higher than that on the Ni/Al2O3 $(450^{\circ}C)$ catalyst, the activity for CH4ing was also high, which could be attributed to the different type of the carbon formed on the catalyst surface.

Physical Properties of the Al2O3 Thin Films Deposited by Atomic Layer Deposition (ALD법으로 제조된 Al2O3 박막의 물리적 특성)

  • Kim, Jae-Bum;Kwon, Duk-Ryel;Oh, Ki-Young;Lee, Chong-Mu
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.493-498
    • /
    • 2002
  • $Al_2O_3$ is a promising gate dielectric because of its high dielectric constant, high resistivity and low leakage current. Since $OH^-$ radical in $Al_2O_3$ films deposited by ALD using TMA and $H_2O$ degrades the good properties of $Al_2O_3$, TMA and $O_3$ were used to deposite $Al_2O_3$ films and the effects of $O_3$ on the properties of the $Al_2O_3$ films were investigated. The growth rate of the $Al_2O_3$ film under the optimum condition was 0.85 $\AA$/cycle. According to the XPS analysis results the $OH^-$ concentration in the $Al_2O_3$ film deposited using $O_3$ is lower than that using $H_2O$. RBS analysis results indicate the chemical formula of the film is $Al_{2.2}O_{2.8}$. The carbon concentration in the film detected by AES is under 1 at%. SEM observation confirms that the step coverage of the $Al_2O_3$ film deposited by ALD using $O_3$ is nearly 100%.

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction IV. Modification of $CoMo/γ-Al_2O_3$ Catalyst with K

  • Park, Jin Nam;Kim, Jae Hyeon;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1239-1244
    • /
    • 2000
  • A study of K addition to the catalyst of CoMo/ ${\gamma}-Al_2O_3$ was studied. The catalyst with 10 at% of K to Mo atoms in 3C10M, the catalyst added 3 wt% CoO to 10 wt% $MoO_3/{\gamma}-Al_2O_3$, showed the highest activity for water gas shift reaction. The addition of K retarded the reducibility of cobalt-molybdenum catalysts. It gave, however, good dispersion and large BET surface area to the catalysts which were attributed to the disappearance of polymolybdate clustyer such as $Mo_7O_{24}^{6-}$ and the formation of small Mo$O_4^{2-}$ cluster. It was confirmed by the analyses of pore size distribution, activation energy, Raman spectroscopy, and electron diffraction. The activation energies and the frequency factors of the catalysts 3C10M and 5KC10M (the catalyst added 5 at% K for Mo to the catalyst 3C10M) were 43.1 and 47.8 kJ/mole, and 4,297 and 13,505 $sec^{-1}$, respectively. These values were also well correlated with our suggestion. These phenomena were attributed to the direct interaction between K and CoMo oxides irrelevant to the support.